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Abstract

Animation consists of sequentially showing multiple single
frames with small mutual differences in order to achieve
the visual effect of a moving scene. In limited animation,
these frames are drawn as semantically meaningful vec-
tor images which could be referred to as clean animation
frames. There are limited animation workflows in which
these clean animation frames are only available in raster
format, requiring laborious manual vectorization.

This work explores the extent to which line-art image
vectorization methods can be used to automatize this pro-
cess. For this purpose, a line-art image vectorization
method is designed by taking into account the structural
information about clean animation frames. Together with
existing state-of-the-art line-art image vectorization meth-
ods, this method is evaluated on a dataset consisting of
clean animation frames. The reproducible evaluation shows
that the performance of the developed method is remark-
ably stable across different input image resolution sizes and
binarized or non-binarized versions of input images, even
outperforming state-of-the-art methods at input images of
the default clean animation frame resolution. Furthermore,
it is up to 4.5 times faster than the second-fastest deep
learning-based method. However, ultimately the evaluation
shows that neither the developed method nor existing state-
of-the-art methods can produce vector images that achieve
both visual similarity and sufficiently semantically correct
vector structures.

Keywords: vectorization, line-art, animation, deep-
learning

1 Introduction

In principle, animation consists of sequentially showing
single frames in order to achieve the visual effect of a
moving scene. Limited animation is an animation technique
in which frames are not completely redrawn (like in full
animation), but where the moving parts (also called cels)
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are reused over frames.
The hand-drawn limited-animation production process

is composed of four phases. Based on the storyboard pro-
duced in the first phase, animators repeatedly draw and
improve rough key frames in the second phase. These
keyframes are line drawings only drawn for critical mo-
ments in a scene and contain mostly cels. In the third phase,
the rough keyframes cleaned of any spurious lines or ob-
solete text markers and vectorized. To achieve the visual
effect of fluidity, a large number of frames in between the
keyframes are drawn. Finally, in the fourth phase, the clean
frames are colored and enriched with special effects and a
background image.

In order for the limited animation production process
to proceed as quickly and as accurately as possible, clean
frames need to be drawn as vector images. In the event of
clean animation frames being only available in raster for-
mat, it is necessary to manually vectorize the images before
they can be used efficiently. Automatizing this process is
challenging, as the resulting line-art vector image needs to
be semantically meaningful, i.e., the arrangement, topology
and parameterization of graphical primitives (i.e., Bézier
curves) need to make sense and be close to how artists
would draw. An example of such a process is depicted in
Figure 1

In order to alleviate this issue, this work will attempt to
answer the Research Question 1 (RQ1): To what extent
is it possible to automatically vectorize clean animation
frame line art in a manner that is semantically meaningful?

To answer RQ1, the Research Objective 1 (RO1) is to
create a method for line-art vectorization that takes clean
animation frame raster images as input and outputs the
corresponding semantically meaningful vector image. This
method is based on a deep learning model tailored to the
qualitative structure of clean animation frames as input and
output images, as traditional heuristics-based algorithms
[15, 19, 11] tend to produce vector images that visually
resemble the raster image closely, but contain semantically
meaningless vector primitives.

Accordingly, the Research Objective 2 (RO2) is to per-
form an evaluation that ascertains the extent to which the de-
veloped method and existing state-of-the-art line-art image
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Figure 1: Overview of the research objective. The objective is to automatically convert clean animation frame line-art raster
images into vector images. Zooming into the figure reveals the structural difference between the input and the output image.
Input and output images are provided by Tonari Animation. Note that the output image is taken from the gold standard test
dataset. For a genuine reconstruction result of the developed line-art vectorization method, refer to Figure 5.

vectorization methods are able to vectorize clean animation
frames.

The code for this work is publicly available at
https://github.com/nopperl/marked-
lineart-vectorization.

2 Related Work

This section details existing work on image vectorization,
specifically for the case of line art. Since there is a non-
injective relation between vector images and raster images,
converting a raster image into a vector image is a non-trivial
task. Hence, state-of-the-art methods primarily utilize
learned models to achieve this. While there exist methods
based solely on heuristic optimization [15, 19, 11, 1, 21],
they do not produce the intended output for this task, as the
resulting vector primitives rarely resemble the primitives
an artist would draw. Additionally, they require manual
hyperparameter tuning for each individual image. Further-
more, each method relies on strong assumptions on the
input image, such as exceeding a specific resolution, a low
signal-to-noise ratio or containing only specific junctions.

While image vectorization is not yet a solved task, there
have been some recent advances in deep learning for vector
images. Reddy [13] introduce Im2Vec, an encoder-decoder
architecture consisting of a Convolutional Neural Network
(CNN) encoder and a Recurrent Neural Network (RNN)
decoder. The CNN encodes the image into a latent feature
vector, while the RNN is used to decode this feature vec-
tor into a fixed-length sequence of vector shapes based on
multiple Bézier curves. It can be trained to vectorize raster
images without vector supervision. This would be very
useful in the context of line-art vectorization. The ability
to train the model without vector supervision stems from
its usage of a differentiable rasterizer [8]. In the general
case, there are two main limitations of Im2Vec: The pixel
resolution has to be defined at training time and the model
does not scale well to higher resolutions. Additionally, the
outputs sometimes contain degenerate features or seman-
tically useless parts. Furthermore, Im2Vec only works on

a specific type of image, such as emojis or icons. Finally,
there were no experiments in the paper to output more than
4 shapes. Hence, it is doubtful whether it is possible to
train the RNN decoder to output the large number of Bézier
curves required for a clean animation frame.

The virtual sketching framework introduced by Mo et al.
[10] is similar to Im2Vec in that it is trained without vector
supervision to vectorize raster images. Other than that, it
differs from Im2Vec in multiple ways. The main difference
is that it constrains the output to only produce quadratic
Bézier curves. Also, it is an iterative model, i.e. the curves
are sequentially added to a canvas in a differentiable man-
ner. After a given number of curves is drawn, the loss
is computed and propagated through all the steps. These
two differences make the model more suitable for profes-
sional line art. However, since the iterative model is trained
mainly by computing a perceptual loss [6] of the whole
output image with the input image, the results are not se-
mantically meaningful vector images.

A different approach is to incorporate parts of traditional
optimization-based methods. Based on earlier work [1],
the state-of-the-art method by Puhachov et al. [12] uses a
learned ensemble model to detect curve keypoints (such as
junctions, start/end points and corners). Together with the
input image, these keypoints are used by a geometric flow
algorithm to find connections between keypoints and com-
pute their geometry. It achieves remarkably good results,
but has a more narrow aim than the proposed work. The
algorithm focuses on retaining the correct stroke connectiv-
ity in the presence of noise, in their case for scanned pencil
drawings. However, clean animation frames are not noisy
and the curves are more narrow and densely connected,
forming one large connected component for curves.

On the other hand, there do exist works that attempt to
fully learn a line-art vectorization model using (partially)
vector supervision, which makes it easier to produce seman-
tically meaningful vector images [18, 4, 2]. Of note is a
method to generate technical drawings by Egiazarian et al.
[3]. It uses the Transformer [16, 14] architecture and is
constricted to only handle 10 curves per image. To handle
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Figure 2: Overview of the proposed method. The method
iteratively reconstructs a given raster line-art image as a
vector image. At time step t = 0, an algorithm identifies a
new curve to reconstruct and places a marker on it. This
information is then passed to a learned marked-curve recon-
struction model to reconstruct the curve in vector format
using cubic Bézier curve parameters. This output is added
to a canvas, which is taken into account when identifying
the curve to reconstruct at t + 1.

images with a larger amount of curves, each image is split
into fixed-size tiles. The tiles are processed independently
by using the Transformer model to predict vector primitives
to match the curves in the image. The resulting primitives
are then refined using a physics-inspired algorithm by align-
ing them to the black pixels in the raster image. Afterwards
the primitives of all tiles are merged using a simple heuris-
tic algorithm. While the model produces good results on
technical line drawings, the authors also demonstrate that
it generalizes to other line art. It is limited by the assump-
tion that there are less than 10 curves within a tile and the
reliance on the heuristic merging algorithm.

3 Method

This section describes a method to automatically convert
line-art raster images into vector images. The method is
visualized in Figure 2 and consists of two parts: the main
part is a learned model that takes as input a raster line-art
image and a mark on a curve in this image and outputs a
cubic Bézier curve which fits the marked curve, which is
described in Section 3.1. The second part is a lightweight
algorithm that uses this model iteratively to reconstruct all
curves in an image, which is described in Section 3.2.

The method is designed in an iterative manner in order
to handle the large amount of Bézier curves in the consid-
ered line-art images. Additionally, this structure is more
amenable to manual fixing of the output, since missing
curves can easily be reconstructed by invoking the curve
reconstruction part with a marker on the curve in question.

3.1 Marked-Curve Reconstruction Model

The marked-curve reconstruction model architecture is de-
picted in Figure 3 and was designed by following the princi-
ple that reducing the complexity of the task the model needs
to solve increases the probability that the model actually
converges to a suitable state.

This is achieved by three design decisions. The most
important design decision is to have the model reconstruct
only a single curve instead of all curves per invocation. The
other two decisions are based on the input and the output
of the model and are explained below.

3.1.1 Input and Output

The input of the model is a line-art raster image. Addition-
ally, this image contains one marker pixel placed on a curve
to reconstruct. Importantly, this means that the location
of the curve is already established. This information can
be used to reduce the task complexity for the model by
centering the input image on the mark.

The raster input images are represented using the Red-
Green-Blue (RGB) color model, i.e., each pixel is repre-
sented using three floating-point numbers in [0,1].

The output of the model is defined as the parameters
of a cubic Bézier curve with a fixed stroke width. The
parameters are defined by the start point, the end point
and two control points, resulting in a vector of length 8.
This output structure is sufficient to represent the output
data domain considered in this work, i.e., clean animation
frames.

3.1.2 Model Architecture

The architecture of the marked-curve reconstruction model
is depicted in Figure 3. It consists of an encoder neural
network that turns the input image x into a latent vector z
of length L, and a decoder neural network that turns this
latent vector into cubic Bézier curve parameters o.

Since the input is an image, the encoder is a convolu-
tional neural network. A global average pooling layer [9]
is used at the end to produce a latent vector of predefined
length L independent of the input image size. The hyperpa-
rameters of the encoder layers are displayed in Table 1.

Note that, as described above, the encoder architecture
is designed to handle variably sized input, with these vari-
ables being denoted in Table 1. The batch size B is used
to process multiple observations in parallel and increase
the effectiveness of batch normalization by decreasing the
variance. The image width W and height H need to be a
multiple of 2, but can be otherwise freely chosen. The la-
tent vector length L needs to correspond to the length used
for the input vector of the decoder. For this work, the hyper-
parameters are set to B = 32, W = H = 512 and L = 128.
L = 128 was chosen after early experiments with smaller
resolutions. W and H are set to a square multiple of 2 ap-
proaching the maximum clean animation frame resolution
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Figure 3: Architecture overview of the marked-curve reconstruction model. Note that for brevity, lines with two points are
shown instead of cubic Bézier curves with four points.

of 1280×720 pixels. Note that the width and height delib-
erately do not correspond to the exact resolution of clean
animation frames in the dataset to show that the model does
not overfit to a specific resolution. B is maximized under
the constraint of a limited amount of Graphics Processing
Unit (GPU) memory.

The decoder is summarized in Table 2 and is a 2-layer
multi-layered perceptron (MLP), which turns the latent
vector of length L into a vector of length P ∗ 2, where P is
the number of cubic Bézier curve parameters. Since cubic
Bézier curves are parameterized by a start point, an end
point and two control points, P = 4. Hence, the output
is restricted to [0,1] using the sigmoid function. The x-
coordinates of the cubic Bézier curve points are then scaled
with the image width, while the y-coordinates are scaled
with the image height.

3.1.3 Training

The model is trained using supervised learning with a com-
bination of a raster-based loss for visual similarity and
a vector-based loss for semantic correctness. This task-
derived loss combination is an important distinction from
related work [13, 10, 3].

The vector loss follows Egiazarian et al. [3] and is an
even combination of mean absolute error (MAE) and mean
squared error (MSE). Defining a raster-based loss is more
difficult, since the model outputs the cubic Bézier curve
in vector format, which needs to be rasterized in a differ-
entiable manner. The differentiable rasterizer introduced
by Li et al. [8] is used for this. The raster output image is
then compared to the rasterized ground truth image, with
all curves aside from the marked curve removed. Using
this, the dice loss function in Equation (1) can be used as
loss. Note that o is the model output and y is the ground
truth raster image.

dice(o,y) = 1 − 2yo + 1
y + o + 1

(1)

The model is trained using the widely used Adam [7]
optimizer with a learning rate of η = 5 ∗ 10−4.

3.2 Iterative Curve Reconstruction Algorithm

The marked-curve reconstruction model introduced in Sec-
tion 3.1 is the main part of the line-art image vectorization
method, but reconstructs only a single curve without color
or stroke width information given a marked curve on the
line-art raster image. In order to vectorize an entire line-art
raster image, an algorithm has to be defined around the
model that performs three tasks detailed in the following
sections.

3.2.1 Color and Stroke Width

For the first task, recall that the marked-curve reconstruc-
tion model does not output color information. Since color
carriers significant meaning in clean frames, it is necessary
for the algorithm to produce the correct color information
for all predicted curves.

This can easily be done for clean animation frames as
they are drawn according to a color scheme which is known
a priori. Hence, the image can be simply segmented ac-
cording to these colors. For the dataset considered in this
paper, these segments already exist. Then, the curve colors
of each segment are set to black and each segment is indi-
vidually input into the marked-curve reconstruction model.
The color of its output can then be set to the segment color.

In the same vein, the marked reconstruction model does
not output stroke width information. However, in clean
animation frames, all curves share the same stroke width
by design. Hence, it is possible to assume a constant stroke
width for the input image and to apply it to all reconstructed
curves.

3.2.2 Curve Identification

In order to indicate to the marked-curve reconstruction
model which curve needs to be reconstructed, the second
task consists of sampling a pixel lying on a curve not al-
ready reconstructed given the input image (more specifi-
cally an input image segment, as described in Section 3.2.1)
and a canvas image containing already reconstructed curves.
In the case of clean line-art images considered in this work,
this can simply be done by sampling a random black pixel.
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layer output shape # params filter size kernel size stride padding
2-d conv (B, 32, W/2, H/2) 896 32 3 2 1
2-d conv (B, 64, W/4, H/4) 18496 64 3 2 1
2-d conv (B, 128, W/8, H/8) 73856 128 3 2 1
2-d conv (B, 256, W/16, H/16) 295168 256 3 2 1
2-d conv (B, 512, W/32, H/32) 1180160 512 3 2 1
2-d conv (B, L, W/32, H/32) 589952 L 3 1 1

avg pool + squeeze (B, L) 0 L W/32 - -

Table 1: Summary of the layers of the encoder neural network of the marked-curve reconstruction model.

layer output shape # params size
linear (B, L/2) 8256 L/2

batch norm (B, L/2) 2(L/2)
Rectified Linear Unit (ReLU) (B, 2P)

linear (B, 2P) 520 2P
sigmoid (B, 2P) 520

Table 2: Summary of the layers of the encoder neural
network of the marked-curve reconstruction model.

3.2.3 Marked-Curve Reconstruction Model Invocation

In order to vectorize the entire line-art image, the marked-
curve reconstruction model has to be invoked iteratively
until all curves are reconstructed. This is done in multiple
steps, which are laid out in Algorithm 1.

Note, that Line 5 in Algorithm 1 constitutes an intuitive
stopping criterion enabled by the progressive canvas image
subtraction from the remaining image. Since missing a few
curves is not a significant issue and errors in the model
output are to be expected, the stopping criterion is set to
T = ⌊B ∗ 0.1⌉, where B is the number of black pixels in the
original image.

4 Dataset

The dataset used in this work consists of two parts: a
human-generated dataset of 20,564 clean line-art images
and a synthetic dataset. The human-generated dataset con-
sists of 139 vector images provided by Tonari Animation,
425 vector images from the SketchBench benchmark, and
20,000 amateur sketches from the TU Berlin collection.
The size of this dataset is increased using four data augmen-
tation techniques: curve mirroring, curve rotation, curve
reversion and curve dropout. The synthetic dataset is used
to further increase the size of the training data. For that,
images with a low number of randomly sampled cubic
Bézier curves are generated and combined with the human-
generated dataset at a 1:5 ratio. The entire dataset consists
of Scalable Vector Graphics (SVG) vector images and cor-
responding rasterized Portable Network Graphics (PNG)
images, with a uniform color for the background (white)
and the curves (black).

5 Evaluation

To answer the RQ1, this section provides a quantitative and
qualitative evaluation of the extent to which the line-art vec-
torization method developed in this work and comparable
state-of-the-art methods are able to automatically vectorize
clean animation frame line art. It is performed on a held-
out portion of the dataset consisting of 10 Tonari animation
frames.

5.1 Quantitative Evaluation

To perform the quantitative evaluation, the methods are
applied to vectorize a test dataset consisting of evaluation
dataset images and their results are compared using metrics
which quantify the difference between the ground truth (i.e.,
the gold standard) and the vectorization results.

In detail, the vectorization methods are given a raster
image Xraster as input and produce an output vector im-
age Ŷ, where Ŷ = (ŷ j)n

j=0 is a sequence of cubic Bézier
curves of arbitrary length n and each cubic Bézier curve
ŷ = (ŷi)8

i=1 is a sequence of 8 numbers, which represent the
curve parameters (i.e., the start point, end point and two
control points). The metrics measure how well Ŷ matches
the ground truth vector image Y corresponding to the input
image Xraster, where again Y = (y j)m

j=0 is a sequence of
cubic Bézier curves of length m.

Intersection-over-Union (IoU) Following related works
[3, 10, 5], the visual similarity of the output image to the
ground truth image is measured using the IoU defined in
Equation (2). Note, that T P refers to the true positives, FP
to the false positives and FN to the false negatives, which
are calculated by binarizing the rasterized output image
Ŷraster and input image Xraster.

J = T P
T P + FP + FN

(2)

Curve error One method of measuring the correctness
of the vector structure of the output Ŷ is to calculate its
distance to the ground truth image Y. This curve error
is defined in Equation (3) as the sum of the distance of
each curve in the output image to the corresponding ground
truth curve. Hungarian ordering is used to establish curve
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correspondence, i.e. the ground truth curve with the mini-
mum distance is paired to each output curve. The sum of
absolute errors defined in Equation (4) is used as distance
function d(ŷi,y j).

curve error(Ŷ,Y) = meann
i=0

(
m

min
j=0

d(ŷi,y j)
)

(3)

d(ŷ,y) =
8

∑
i=0

|ŷi − yi| (4)

Curve ratio Given an output image Ŷ that visually re-
sembles the ground truth Y, a simple measure of matching
vector structures is to consider the ratio number of output
curves and ground truth curves n/m ∈ [0,n]. In the case of
perfectly matching vector structures, n = m and n/m = 1.

Curve length Another method to measure how well the
output vector structure matches the ground truth is to cal-
culate the average curve length in pixels and compare it to
the ground truth.

Curve distance Following Yan et al. [20], holes be-
tween curves are measured using the the minimum distance
of each curve endpoints to each other curve endpoints.
In detail, the metric is defined by Equation (5), where
E = [0,1,6,7] defines the indices of the start and the end
point parameters of a curve. The closer the value is to the
ground-truth baseline, the closer the vector structure can be
considered to match the ground truth, while values that are
higher than the baseline indicate more unintentional holes.

meann
i=0

(
n

min
j=0

∑
k∈E

|ŷi
k − ŷ j

k|

)
(5)

Efficiency Furthermore, the runtime (in seconds) and
GPU memory usage is measured to evaluate the efficiency
of the algorithms.

5.1.1 Results

Table 4 shows the performance of the following line-art
image vectorization methods: the method developed in
this work (marked), the traditional algorithm by We-
ber [19] (autotrace), the vectorization algorithm com-
bining deep learning and heuristic optimization by Puha-
chov et al. [12] (polyvector-flow), the deep learning-
based algorithm using raster supervision by Mo et al. [10],
(virtual-sketching), and the deep learning-based
algorithm using vector supervision by Egiazarian et al. [3]
(deepvectechdraw).

The methods are applied on the Tonari clean animation
frame test dataset rasterized at a resolution of 512px, while
preserving the aspect ratio. The Intersection-over-Union

(IoU), curve error and runtime metrics can be easily in-
terpreted: While the arrow in the column name indicates
whether larger or smaller numbers represent better per-
formance, the results of the best and the second-best per-
forming method on the metric are indicated using bold and
italics fonts, respectively.

For the remaining metrics, recall that the average curve
length and the average curve distance should be close to
the ground truth values, which are listed in Table 3. The
curve ratio is calculated with the number of curves listed in
the same table.

Table 4 shows that the line-art vectorization method de-
veloped in this work outputs vector images that resemble
the input raster image the closest. It achieves this with the
second-smallest curve error behind the method by Puha-
chov et al. [12] and with a curve distance that is close
to the ground truth, just behind the method by Mo et al.
[10]. Interestingly, it uses roughly half the curves of the
ground truth, with curves on average being nearly twice
as long. Finally, it is also the fastest deep learning-based
method, while requiring the least amount of dedicated GPU
memory.

Note that the traditional method by Weber [19] signifi-
cantly outperforms all other methods on the runtime. On
the other hand, it has the highest curve error and lowest
IoU, suggesting ill-fitting outputs. The method by Puha-
chov et al. [12] also achieves a surprisingly low IoU, but
also the best curve error.

The two deep learning-based methods by Mo et al.
[10], Egiazarian et al. [3] approach the IoU of the method
developed in this work, albeit with a significantly higher
curve error and runtime. Additionally, the method by
Egiazarian et al. [3] outputs the lowest amounts of curves,
but the curves of the method by Mo et al. [10] are still
longer on average, suggesting that this method produces
more curves that do not fit the ground truth curves.

In general, most methods produce output images that sur-
prisingly do not cover the input image well. This suggests
that no method reproduces clean animation frames to the
extent required by the task considered in this work.

5.1.2 Results with higher resolution input images

The methods by Weber [19], Puhachov et al. [12] per-
formed unusually low on the evaluation in Table 4. A
potential cause for this was identified as the low resolution
of input images at 512px. To investigate this hypothesis, the
evaluation was rerun with input images rasterized at twice
the resolution, i.e., 1024px, while preserving the aspect
ratio. Keep in mind that this is significantly higher than the
standard resolution of clean animation frames considered in
this work. Hence, performance increases of methods at this
resolution will likely not materialize when they are applied
to real-world clean animation frames, which usually will
only be available at a lower resolution.

Figure 4 compares the evaluation results of the two reso-
lutions sizes. Note that, since metrics measured in pixels
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curves curve length curve distance
median median median

tonari 512-0.512 205.00 2.56 1555.82
1024-1.024 205.00 5.12 1725.81

sketchbench 512-0.512 208.00 12.43 2355.22
1024-1.024 208.00 24.85 2726.03

Table 3: Selected metrics of the vector images in the test dataset. This information can be used as baseline for the
corresponding metrics in Table 4.

autotrace polyvector-
flow

virtual-
sketching

deepvec-
techdraw

marked (ours)

IoU ↑ median 0.02 0.12 0.29 0.28 0.30
curve ratio median 0.23 1.35 0.30 0.19 0.43
curve length median 1.00 0.55 11.16 9.06 8.19
curve distance median 891.00 439.18 1442.91 917.50 1361.28
curve error ↓ median 20.37 14.05 20.08 17.58 16.76
runtime ↓ median 0.35 14.82 22.99 97.73 9.49

Table 4: Comparison of the performance of the marked line-art image vectorization method and four prior works on the
Tonari test subset at a resolution of 512px. If possible, the result of the best and the second-best performing method for the
metric is indicated using bold and italics fonts, respectively.

scale linearly with the resolution size, they are normalized
by the resolution size. It is clear that all prior methods
except AutoTrace [19] perform significantly better than at
512px resolution. The method by Puhachov et al. [12] even
reaches an IoU well over 0.5, i.e., its outputs cover more
than half of the input image correctly on average. This is
dampened by a high curve error and curve distance, indicat-
ing incorrect vector structures. The method by Egiazarian
et al. [3] performs similarly well, with a lower IoU but
better curve error and curve distance, seemingly striking a
different balance between visual resemblance and semanti-
cally correct vector structures.

Interestingly, the metrics of the method developed in
this work stay remarkably stable at the increased resolu-
tion. This is especially remarkable for the runtime, which
significantly and predictably changes for all other methods.

One potential reason for this remarkable input image
resolution invariance of the method developed in this work
is the selection of reconstruction curves using marks, which
explicitly forces the model to reconstruct curves which
other methods might not have detected. This can be the
case for curves that are too thin or contain some spots at
low resolutions.

5.2 Qualitative Evaluation

For a visual comparison, Figure 5 shows the best output
of each method for an example clean animation frame
by Tonari Animation. The input image has a resolu-
tion of 512px and is binarized for the methods by Weber

[19], Puhachov et al. [12], Mo et al. [10], since that leads
to higher-quality outputs. Since the main objective is to not
only achieve visual similarity but also match the seman-
tically correct vector structure of the ground truth vector
image, Figure 5 attempts to visualize the underlying vector
structure. Following Guo et al. [5], Mo et al. [10], Puhachov
et al. [12], this visualization is achieved by representing
curves using mutually exclusive colors. Furthermore, the
images are zoomed in to lay bare minute differences. Indi-
cations for a correct vector structure are a constant color
for continuous curves and a similarity to Figure 5a.

All methods appear to be visually correct at first glance,
with varying quality and the methods by Egiazarian et al.
[3], Mo et al. [10] not performing favourably. However,
looking into details reveals significant deficiencies. The
method developed in this work arguably produces the most
closely matching vector structure, with most curves faith-
fully reconstructed following their appearance. On the
other hand, curves are often slightly too short, leaving un-
desirable holes. Furthermore, there is a bias towards low
curvature.

The method by Mo et al. [10] is similar to the method de-
veloped in this work in that it faithfully reconstructs curves,
but fails to preserve the constant stroke width. The methods
by Weber [19], Puhachov et al. [12] do not faithfully re-
construct curves, with multiple curves often merged into a
single curve or altogether missing. This leads to a visually
clean output – even without a significant amount of holes in
the case of AutoTrace [19]. However, the produced vector
structure is far from the ground truth in Figure 5a.
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Figure 4: Metrics for the line-art image vectorization methods evaluated on images with 512px and 1024px resolution,
respectively. Points denote the median of the metric, while vertical bars denote the inter-quartile range (IQR). Horizontal
lines show the trend of the metric. The metrics for the method developed in this work are emphasized. Note that they are
not significantly affected by the image resolution and none decreases with lower resolutions.

6 Conclusion

The objective of this work was to ascertain to what extent it
is possible to automatically vectorize clean animation frame
line art in a semantically meaningful way. In order to an-
swer the RQ1, Section 3 proposed a clean animation frame
line-art image vectorization method and Section 5 evalu-
ated it together with prior work on an evaluation dataset
provided by Tonari Animation. It could be shown that
while the proposed method outperforms prior work at the
default input image resolution, ultimately no line-art im-
age vectorization method is able to satisfactorily vectorize
clean animation frames, especially failing to properly re-
construct details and primitives with high curvature. Hence,
no method studied in this work is of practical use in the
limited-animation workflow. In order to achieve the goal
of automatizing the tedious step of vectorizing clean ani-
mation frames, the curve reconstruction needs to be signifi-
cantly more accurate.

Advantages of the developed method include remark-
able robustness to input image resolution and binarization,
resource efficiency and flexibility for manual fixing. Lim-
itations include a significant amount of small holes in re-

constructed curve sequences, limited semantic correctness
and a bias towards lower curvature.

6.1 Future Work

There are numerous opportunities to improve on the pre-
sented work. The dataset could be improved by collecting
a larger amount of high-quality data or performing more
advanced data augmentation or feature extraction. A fur-
ther promising improvement is to finetune a large vision-
language model such as CogVLM [17] instead of training
a small CNN based encoder-decoder model from scratch in
order to utilize their emergent capabilities.

Furthermore, there exist other tasks to which the devel-
oped model could be extended. These include the gener-
ation of inbetween frames based on keyframes or clean
animation frame colorization. Moreover, the model output
could be constrained to exhibit temporal consistency, i.e.,
to consist of curves that remain consistent across frames of
the same scene.
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(a) Ground truth. (b) Output of the developed method.

(c) Output of AutoTrace [19]. (d) Output of Egiazarian et al. [3].

(e) Output of Puhachov et al. [12]. (f) Output of Mo et al. [10].

Figure 5: The output vector image given a Tonari clean animation frame in raster format as input of each line-art image
vectorization method studied in this work. The vector structure behind the images is revealed by representing each curve
with a mutually exclusive color and a high zoom level.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



References

[1] Mikhail Bessmeltsev and Justin Solomon. Vectoriza-
tion of line drawings via polyvector fields. ACM Trans.
Graph., 38(1):9:1–9:12, 2019. doi: 10.1145/3202661.
URL https://doi.org/10.1145/3202661.

[2] Ayan Kumar Bhunia, Pinaki Nath Chowdhury,
Yongxin Yang, Timothy M. Hospedales, Tao Xiang,
and Yi-Zhe Song. Vectorization and rasterization:
Self-supervised learning for sketch and handwriting.
In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021,
pages 5672–5681. Computer Vision Foundation /
IEEE, 2021. doi: 10.1109/CVPR46437.2021.00562.
URL https://openaccess.thecvf.
com/content/CVPR2021/html/Bhunia_
Vectorization_and_Rasterization_
Self-Supervised_Learning_for_
Sketch_and_Handwriting_CVPR_2021_
paper.html.

[3] Vage Egiazarian, Oleg Voynov, Alexey Artemov, De-
nis Volkhonskiy, Aleksandr Safin, Maria Taktasheva,
Denis Zorin, and Evgeny Burnaev. Deep vector-
ization of technical drawings. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm,
editors, Computer Vision - ECCV 2020 - 16th Eu-
ropean Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XIII, volume 12358 of Lec-
ture Notes in Computer Science, pages 582–598.
Springer, 2020. doi: 10.1007/978-3-030-58601-
0 35. URL https://doi.org/10.1007/978-
3-030-58601-0_35.

[4] Jun Gao, Chengcheng Tang, Vignesh Ganapathi-
Subramanian, Jiahui Huang, Hao Su, and Leonidas J.
Guibas. Deepspline: Data-driven reconstruc-
tion of parametric curves and surfaces. CoRR,
abs/1901.03781, 2019. URL http://arxiv.
org/abs/1901.03781.

[5] Yi Guo, Zhuming Zhang, Chu Han, Wenbo Hu,
Chengze Li, and Tien-Tsin Wong. Deep line draw-
ing vectorization via line subdivision and topology
reconstruction. Comput. Graph. Forum, 38(7):81–
90, 2019. doi: 10.1111/cgf.13818. URL https:
//doi.org/10.1111/cgf.13818.

[6] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Per-
ceptual losses for real-time style transfer and super-
resolution. In Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling, editors, Computer Vision - ECCV
2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part
II, volume 9906 of Lecture Notes in Computer Sci-
ence, pages 694–711. Springer, 2016. doi: 10.1007/
978-3-319-46475-6\ 43. URL https://doi.
org/10.1007/978-3-319-46475-6_43.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

[8] Tzu-Mao Li, Michal Lukác, Michaël Gharbi, and
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A Appendix

This section contains additional information related to the
implementation of the vectorization algorithm.

Algorithm 1: Iterative Curve Reconstruction.
Input: A raster line-art image.
Output: A vector line-art image.

1 Segment input image by color;
2 foreach image segment do
3 canvas = an empty vector image of the same size

as the input image;
4 remaining = image segment;
5 while number of black pixels in remaining > T ;

do
6 Compute marker by applying curve

identification on the remaining image;
7 Centered image = center the remaining

image on the marker;
8 reconstructed curve = invoke the

marked-curve reconstruction model using
the centered image;

9 Inverse the center location of the curve by
using the mark location;

10 Add the reconstructed curve to the canvas
image;

11 remaining = remaining - rasterized canvas
image;

12 end
13 Set color of all curves in the canvas image to the

segment color;
14 end
15 Merge the canvas images;
16 return Merged canvas images
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