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Abstract

Many deep learning applications are based on graph data
in order to explore relationships or to analyze structures.
Labeling this data is expensive and often requires ex-
pert knowledge. For the application of graph cluster-
ing to neuron data, the SOTA method GraphDINO gen-
erates self-supervised graph embeddings combined with
the downstream task of clustering these embeddings. We
observe on a particularly challenging neuron dataset that
this method does not lead to satisfying clustering results.
Therefore we use the graph embeddings generated by
GraphDINO as an initial starting point to improve the net-
work and to guide the network training. To achieve this,
we developed the visual analytics framework NetDive.
The user can analyze the graph embeddings and label sin-
gle neurons that are falsely clustered. This annotation in-
formation is then used to train a semi-supervised model.
To this end, we developed a network architecture, titled
GraphPAWS, that assembles components of GraphDINO
and of the semi-supervised network architecture PAWS.
The model training can be started from within the visual
analytics application NetDive and the resulting graph em-
beddings are available in NetDive as soon as the retraining
is completed. We demonstrate how we iteratively improve
the model performance using NetDive and GraphPAWS
and evaluate our model against the self-supervised SOTA
for our dataset.

Keywords: Visual analytics, Graph embeddings, Graph
transformer

1 Introduction

Many deep learning applications are based on graph
data, e.g. in the fields of anomaly detection in networks,
relationship analyses in social networks and in neuro-
science. The use case investigated in this paper is to
cluster unlabeled spatial graph data that represents unreg-
istered drosophila melanogaster larval level 1 neurons to
reproduce meaningful cell types, addressing the objective
of neuroscience to understand the correlation between
nerve cells, also named neurons, and behavior [17, 1, 23].
The cell type is an annotation that a neuron receives based
on predefined features. Depending on the feature set, the

cluster groups vary. Key features explored in the literature
are morphology, genetic markers, the neuron position
within the nervous system, connectivity and intrinsic
electrophysiological signatures [8]. We aim to cluster the
neurons solely based on their morphology and aim to find
correlations to meaningful cell type assignments as the
SOTA method GraphDINO does not produce satisfying
results.
This use case embeds in the broader challenge of clus-
tering data without initially having labels to train the
deep learning model with a supervised objective function.
Experts initially do not know what the network should
learn, but want to be able to steer the training while
gathering new knowledge about the resulting clusters.
This leads us to design a pipeline that addresses these
problems by steering the training of the graph network
through incremental analysis of the generated embeddings
and by incorporating the new knowledge back into the
training process.

Contribution: We develop a semi-supervised net-
work architecture GraphPAWS that adopts the graph
encoder of the self-supervised deep learning architecture
GraphDINO and the processing of support samples of the
semi-supervised deep learning architecture PAWS. The
support samples are sparse annotations for the input data
and the count of support samples is variable. The result-
ing graph latent embeddings are visualized in a visual
analytics (VA) web application we title NetDive that we
developed to analyze the embeddings, to iteratively add
new support samples if needed and to retrain a model
with this new information. For the evaluation we use
manually labeled neurons to compute the performance
analytically and we combine this with visual inspection
and comparative analysis enabled by the VA application.
The GraphPAWS architecture is applicable to a broader
range of graph clustering tasks and NetDive is partly data
type agnostic and therefore applicable also to embeddings
of other input data types.

2 Background and Related Work

Our work combines graph representation learning with VA
to utilize the human in the loop to incrementally improve
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the network performance. We use the labels generated
within the VA application as support samples for the semi-
supervised network architecture, whilst we make use of
contrastive learning to process the unlabeled input sam-
ples.

2.1 Contrastive Learning

Contrastive learning belongs to the most successful self-
supervised learning methods. It involves the derivation of
supervisory signals from the input data to guide the learn-
ing process [14].

Contrastive learning techniques optimize the model out-
put by embedding the latent representations of variations
of the same input sample close to each other, while in-
creasing the distance between the embeddings of differ-
ent input samples. The pairs of samples that are either
attracted or repelled by each other are titled positive pair
or negative pair respectively [14]. Phuc Le-Khac et al.
[12] explain, that contrastive learning is not about learn-
ing from individual samples, but instead from comparing
multiple samples. Positive pairs are generated by applying
data augmentations to an input sample to get variants of
input data that are considered similar.

The original non-augmented input sample is called an-
chor view and the augmented variant is referred to as the
positive view. Negative pairs are generally formed by com-
paring the anchor view with all the other input samples. If
contrastive learning is solely based on positive views [21],
the model architecture needs to ensure that the latent rep-
resentations do not collapse to a single node in the embed-
ding space. This phenomenon is called node collapsing.
Another force needs to increase the space between differ-
ent samples.

A contrastive model includes an encoder that maps the
input view x ∈ X to a representation vector v ∈ Rd and a
transform head h(v;Φh) : V → Z, where Φ represents the
model parameters, that are either used to aggregate fea-
tures from multiple representation vectors or to reduce the
dimensionality of a feature representation vector [12].

Prominent models that use contrastive learning to
learn image representations are SimCLR [6], MoCo [10],
BYOL [9], SwAV [4], PIRL [20] and DINO [5]. GraphCL
[24] and GraphDINO [21] are examples for contrastive
models that process graph data.

2.2 Visual Analytics for Latent Embeddings

There are in general two user groups in the field of visual
analytics (VA) for deep learning [3]: model-driven users
that compare model performances and data-driven users
that study properties of the underlying data. A crucial cri-
teria for VA applications is global check and local check.

Addressing this, a popular approach to compare embed-
ding spaces is the comparison of local neighborhoods of
individual objects in combination with a global compar-
ison of the embeddings [11, 3]. The global embedding

comparisons are typically implemented using scatter plots
that are interlinked with detail views of selected objects
[11]. Therefore dimensionality reduction algorithms are
used to map the high-dimensional data in 2D or in 3D.
The most common dimensionality reduction algorithms
are PCA, tSNE, and UMAP [19]. Boggust et al. [3] dis-
covered, that users prefer deterministic dimensionality re-
duction algorithms and that they distrust t-SNE and there-
fore use PCA dimensionality reduction as the default set-
ting for the global projection. The visual analytics tool
EmbComp [11] implements a binning feature for the scat-
ter plots to manage the scale of big datasets. The scatter
plots can be investigated using single object selection or
multiple object selection using for example a rectangle se-
lection tool [11, 15].

The investigation of local neighborhoods is built upon
varying metrics. EmbComp visualizes point-wise com-
parison metrics and distribution comparison metrics. The
metrics are visualized in bins which can be selected by the
user to select the corresponding objects. The Embedding
Comparator [3] visualizes metrics corresponding to the lo-
cal neighborhoods of a selected datapoint with a histogram
of scores, with color-encoding in the global embedding
plots and with local neighborhood dominoes, i.e. multiple
small visualizations. These small visualizations can be fil-
tered and linked views enable the comparison between vi-
sualizations. The Embedding Comparator highlights dat-
apoints with least and highest similarities to address the
concern of users stating that they make object selections
in an unprincipled way and might miss important correla-
tions between the embedding spaces. Emblaze [19] states,
that the Embedding Comparator lacks in finding relevant
neighborhoods and addresses this issue in their applica-
tion. The novel approach of Emblaze is comparison of em-
bedding spaces using Star Trail augmentation. The trails
connect the embeddings of the same object in different em-
bedding spaces and the transition between the spaces can
be animated using a slider. The connection lines, i.e. Star
Trails, between the object embeddings quickly reveal dat-
apoints that vary the most between multiple embedding
spaces.

While partly being data type agnostic, the Embedding
Comparator, EmbComp and Emblaze as well as many
other lines of research regarding visual analytics for em-
beddings focus on NLP use cases.

In the field of graph embeddings the tools Embed-
dingVis [13], CorGIE [15], GEMvis [7] and BiaScope [18]
were developed, which are focused on node embedding.

CorGIE [15] encodes the graph nodes and trains a GNN
to embed the nodes in the latent space. The user can inter-
act with the node embeddings and select clusters of nodes
using a rectangle selection tool. The selection leads to a
topology space and feature space analysis. Regarding the
topology space, the k-hop neighbors, i.e. the neighbors
that are reachable by walking along a path with k topo-
logical hops, of the selected nodes are visualized within
a visualization of the original graph. The user can evalu-
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Figure 1: Our pipeline including our visual analytics tool NetDive and our model architecture GraphPAWS.

ate whether the node embeddings corresponds to the topo-
logical closeness. The feature space analysis panel shows
histograms of feature value distributions of the selected
nodes.

GEMvis [7] also interlinks a visualization of the original
graph and the node embeddings. The selection of nodes
can be applied regarding predefined node metrics. Chen
et al. define 9 node metrics, including the node degree
and node eccentricity and the node closeness. The met-
ric values for each node are depicted in parallel coordinate
plots. The user can interact with these plots to select the
according nodes in the original graph and in the embed-
ding space.

While the aforementioned applications EmbeddingVis,
CorGIE, GEMvis and BiaScope are developed for node
embeddings, we implement an application for whole graph
embeddings. Advanced applications exist to leverage VA
to compare and analyze the embeddings generated with
deep learning models. We add the component of dynami-
cally adding new labels to retrain the model while explor-
ing the latent space that the input graphs are embedded in.
We focus the usage of VA for artificial intelligence (AI)
for the specific case, in which ground truth is difficult to
gather and can only be provided to nudge the training in
the right direction. We furthermore integrate detail views
specific to the use case of exploring graph embeddings.

3 Methodology

Figure 1 depicts the pipeline that we set up to incremen-
tally gain new knowledge in order to cluster graph data.

The preprocessed data serves as input data to train, val-
idate and test the GraphPAWS model. GraphPAWS is dis-
cussed in Section 3.1. The model outputs latent represen-
tations of the input graphs. We store the latent represen-
tations on the filesystem and the visual analytics applica-

tion NetDive, discussed in Section 3.2, accesses the data
and provides the user with visualizations and user interac-
tions to explore the latent embeddings and the associated
neurons. This leads to new knowledge that the user can
leverage to retrain the GraphPAWS model.

3.1 GraphPAWS

Our architecture GraphPAWS adopts the graph trans-
former components of GraphDINO and the semi-
supervised architecture of PAWS.

3.1.1 GraphDINO: Self-Supervised Learning for
Graph Data

The GraphDINO network [22] implements self-supervised
contrastive learning based on transformer networks to find
similarities between graphs based on the graph topology
and spatial node information. GraphDINO is an adaptation
of the DINO network for image data [5].

The GraphDINO model builds upon a student-teacher
architecture that is used to generate latent representations
of an input graph x. Both the teacher and the student pro-
cess variations of x. The variations x1 and x2 are sub-
sampled to a fixed number of nodes. Graph x2 is passed
to the teacher encoder and graph x1 is augmented before
being passed to the student encoder. The augmentations
that are used are subsampling, rotation, node jittering, sub-
graph deletion, cumulative jittering and a random transla-
tion of the soma depth.

The student and the teacher network are identically
initialized transformer networks that use the normalized
Laplacian for the positional encoding. The outputs of the
student and the teacher network are the latent represen-
tations z1 and z2 respectively. The multi-layer perceptron
(MLP) implements a normalization layer and a linear layer
to translate the latent representations z1 and z2 to p1 and
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p2. The objective of the network is to decrease the loss that
measures the similarity of p1 and p2, while not resulting
in node collapsing.

GraphDINO uses a cross-entropy loss to measure how
similar the latent embeddings of a sample p1 and p2 are.

3.1.2 PAWS: Semi-Supervised Learning for Image
Data

PAWS [2] implements a semi-supervised deep learning ar-
chitecture based on contrastive views and support samples
to assign one-hot encoded pseudo labels to input images.

PAWS implements three processing streams. Similar
to GraphDINO, it processes an input sample and an aug-
mented version of the input sample in order to train invari-
ances that lead to network generalization. PAWS imple-
ments the image augmentations random crop, horizontal
flip, color distortion and blur. Additionally a mini-batch
of labeled support samples is processed in the third stream.
The support samples are annotated samples that function
as prototype samples for a cluster. PAWS assigns a pseudo
label based on the similarity of the latent embeddings of
the anchor view and the positive view in relation to the
support samples. PAWS expects each mini-batch to be
composed by an equal number of instances for each sam-
pled class.

The objective function uses the cross entropy function
to measure the similarity of the pseudo-labels of the an-
chor view and the positive view. To avoid node collaps-
ing, PAWS uses sharpening in the objective function. The
sharpening function increases the confidence of the prob-
ability distributions, i.e. decreases the entropy.

Additionally the objective function adds a regular-
ization term, titled mean entropy maximization (ME-
MAX) that aims to increase the entropy of an unla-
beled training-batch, to ensure that each label is get-
ting predicted. More concretely, distributions like
[[1.,0.,0.], [1.,0.,0.], [1.,0.,0.]] are penalized and distribu-
tions like [[1.,0.,0.], [0.,1.,0.], [0.,0.,1.]] are favoured.

3.1.3 GraphPAWS: Semi-Supervised Learning for
Graph Data

Our architecture GraphPAWS, depicted in Figure 2, is an
adaptation of GraphDINO and PAWS. We adopt the PAWS
architecture that processes an anchor view x̂, a positive
view x̂+ and a support sample mini-batch x̂s. We replace
the encoder of PAWS with the GraphDINO graph trans-
former. The encoder generates the latent embeddings z for
input x̂ and respectively zs and z+ for the support sam-
ple mini-batch and the positive view. The support sam-
ples are fed into the similarity classifier to compute the
pseudo-labels p and respectively p+ for the anchor view
and the positive view. While PAWS expects the support
sample mini-batch to be balanced, we implement weight-
balancing in the GraphPAWS adaptation of the similarity
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Figure 2: The semi-supervised GraphPAWS architecture
for graph data.

classifier to compensate for class imbalances. This gives
the user more flexibility while annotating neuron graphs.

The objective function is denoted with H(p+, p) in Fig-
ure 2. It corresponds to the objective function imple-
mented by PAWS [2], which is based on cross entropy.
We additionally train on the mean-squared error (mse) ob-
jective function.

The regularization term ME-MAX, implemented in
PAWS, is added both to the cross-entropy and the mse
objective function. We add a second regularization term
that we title One-Hot-Enforcement, which enforces one-
hot encodings of the embedded vectors. While ME-MAX
operates over a batch of samples, One-Hot-Enforcement
is applied to single training samples and averaged over a
batch.

Equation 1 depicts the objective function in relation
to the hyperparameters λ and γ that determine the rele-
vance of the regularization terms ME-MAX and One-Hot-
Enforcement,

loss+λ ∗ME-MAX+ γ ∗One-Hot-Enforcement. (1)

After training the latent embeddings are evaluated by la-
tent space clustering through GMM or k-means and eval-
uated against ground truth labels.

3.2 NetDive

NetDive is developed for model engineers that design and
refine the model and for domain experts to explore the
graph data and to choose a model from the pre-trained
model database. NetDive consists of a backend server
to read and write data from and to the filesystem and a
React frontend that communicates with the backend. On
demand, i.e. using the refresh buttons in the user inter-
face, the backend applies dimensionality reduction to the
requested pre-computed latent embeddings. The frontend
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Figure 3: NetDive layout: (1) First 3D View, (2) Second
3D View, (3) Parameter Panel, (4) Detail View.

visualizes the dimensionality reduced latent embeddings
in three dimensions. We chose to visualize the data in
three instead of two dimensions to achieve a clearer clus-
ter separation. This can come with the downside of dis-
tortion and occlusion. As clustering is not dealing with
issues of length and angle preservation, and the points rep-
resenting our use case of neurons are not covering a lot of
space, which limits the issue of occlusion, we accepted
these downsides. The scatterplots are implemented with
THREE.JS. We use the clustering algorithms k-means and
GMM to display the cluster predictions by color coding
the datapoints in the scatterplots. The clustering algo-
rithms are applied in the backend to the k latent dimen-
sions that GraphDINO outputs before applying the dimen-
sionality reduction. The prediction labels support the user
to evaluate the quality of the latent embedding space.

3.2.1 User Interface

Figure 3 depicts the layout of NetDive. The user interface
(UI) consists of three panels. Two views, annotated with
(1) and (2), and a detail panel annotated with (3). The
two view panels provide the user with parameters embed-
ded in an accordion menu, annotated with (4), to select a
model and analyses values to load and explore the latent
embeddings in form of scatterplots in 3D generated by the
corresponding selected model.

The user can choose between UMAP, t-SNE and PCA to
reduce the 32 latent dimensions to three dimensions. Fol-
lowing Boggust et al. [3] we set PCA as default value. The
datapoints in the scatterplots are color coded. The color
of the datapoints is either assigned based on a selected
ground truth or based on the cluster predictions generated
with the selected clustering algorithm. The implemented
clustering algorithms are k-means and Gaussian Mixture
Models (GMM). The user can select the number of clus-
ters to generate. The color codes can be used to toggle be-
tween the ground truth and the predicted clusters in order

Figure 4: Selecting a lineage using the legend panel.

to detect similarities and dissimilarities. The color codes
further aid with the comparative analyses using the two
views, annotated with (1) and (2) in Figure 3.

Expandable legends, depicted in Figure 4, list the clus-
ter labels that represent the latent embeddings. The labels
are associated with the selected color codes. In Figure 4
the Hartenstein lineages, discussed in Section 4.1, are se-
lected as a ground truth and the color codes correspond to
the ground truth. The user can hide/show and select all
datapoints with specific color codes within the legends.

View (1), view (2) and the detail panel are linked, im-
plementing the concept of multiple linked views (MLVs),
displayed in juxtaposition. When a user selects single or
multiple latent embeddings, the corresponding datapoint
in the other view is highlighted, if present, and the detail
panel depicts a scrollable list of tiles depicting informa-
tion about the selected node(s). The tile headers show dat-
apoint identifier, a button to select the according datapoint
for a 3D graph rendering, which is displayed on top of the
detail panel, and a button to add or update the datapoint
label. The tile content shows pre-rendered images of the
selected datapoint.

3.2.2 Relabeling and Retraining

After initially activating the relabeling feature using the
Relabeling slider in the details panel, all datapoints are
rendered gray and the color coding is disabled.

The user can then select embedded points and relabel
them in the relabeling modal. The modal, i.e. the overlay,
is depicted in Figure 5. The user can either create a new
cluster group and add the selected id for the embedded
graph to that group or they can add it to an existing cluster
group.

The new labels are forwarded to the network training.
The training is triggered within NetDive and processed us-
ing a subprocess call. The default hyperparameters corre-
spond to hyperparameters of the currently loaded model
and the user can update the network hyperparameters for
the training within NetDive in the retraining modal. After
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Figure 5: Relabeling neurons in NetDive.

the training is completed, the embeddings generated with
the new model for the chosen inference set will be avail-
able in NetDive.

NetDive aims to make the analyses and the iterative
training fast and intuitive.

4 Experiments

We conduct a series of experiments to evaluate our dataset
(Section 4.1) on the self-supervised SOTA architecture
GraphDINO (Section 4.2) and on our architecture Graph-
PAWS (Section 4.3).

4.1 Data

The drosophila melanogaster neuron graphs extracted
from CATMAID, a platform for a collaborative recon-
struction and annotation of data, are represented as undi-
rected, acyclic graphs in three dimensions with the root
node representing the soma, i.e. the cell body of the neu-
ron.

We obtained the set of all available 7297 drosophila
melanogaster larval neurons from CATMAID and re-
stricted our analysis to a subset of 2970 neurons that was
annotated by Michael Winding [23], as this subset con-
tains more reliable neuron traces. We reduced this subset
to 2541 neurons by removing all neurons that do not con-
tain exactly one node annotated as soma and by removing
all neurons with less than 200 nodes. CATMAID provides
the neuron graphs as SWC files and we keep the (x,y,z) for
each node of the neuron graph.

For the ground truth we generated a file that stores mul-
tiple ground truth cell type labels for each neuron id. The
annotation files includes manually labeled cell types that
we hand-crafted based on visual inspection. Furthermore
it includes expert annotation by Dr. Volker Hartenstein
[16]. Dr. Volker Hartenstein analyzed lineages, that de-
scribe neurons deriving from the same stem cells called

neuropblasts. He states, that neurons within a lineage do
not only share the same stem cell, but are also alike re-
garding the morphology. The datasets we define in out
experiments are based on these lineages annotated by Dr.
Hartenstein. Lineage BAlc neurons are located in the lat-
eral surface of the antennal lobe and lineage CM4 in the
postero-medial brain cortex.

We conduct our experiments on two subsets of the
drosophila melanogaster dataset. We use the lineages
BAlc and CM4 that Dr. Volker Hartenstein specified and
divide these lineages in visually similar subgroups. Some
lineages are visually coherent, whilst the lineages BAlc
and CM4 fall into visually distinguishable groups. Lin-
eage BAlc consists of 26 neurons, 13 in each brain hemi-
sphere, and divides in three cluster groups. CM4 contains
66 neurons, 33 in each brain hemisphere, and divides in
four cluster groups.

4.2 Self-supervised Training

We train GraphDINO for the learning rates ∈ {0.001,
0.0001, 0.00001}. While Weis et al. train on batch size
∈ {32, 64, 128} we train on batch size ∈ {16, 32} due
to the smaller training dataset. We train with a 60-20-20
training-validation-test split on dataset BAlc.

We evaluate with 4 fold cross-validation for k-means
and for GMM on the validation data by averaging over
100 k-means / GMM adjusted random index (ARI) scores
per fold. ARI measures the similarity between two clus-
terings. We use the ARI computation of the python library
sklearn, which outputs values between -0.5 for especially
discordant clusterings and 1.0 for identical clusterings.

4.3 Semi-supervised Training

We trained 896 models using a grid-search on Graph-
PAWS for the dimensions loss function, ME-MAX in-
fluence λ , One-Hot-Enforcement influence γ , batch size
and learning rate. We used the values [’cross entropy’,
’mse’] for the loss, the values [0, 0.1, 0.5, 1] for λ

and γ , the values [0.001, 0.003, 0.006, 0.0001, 0.00006,
0.00003, 0.00001] for the learning rate and the values [4,
8, 16, 32] for the batch size. We ran the hyperparameter
search for 100 epochs. Accordingly to the self-supervised
GraphDINO training, we train with a 60-20-20 training-
validation-test split on dataset BAlc.

We evaluate with 4 fold cross-validation for k-means
and for GMM on the validation data by averaging over
100 k-means / GMM ARI scores per fold. We list the top
performing models and eliminate the models that suffer
from node collapsing and from an incapability to learn.
We therefore analyzed the feature distributions of the la-
tent embeddings and the loss curve. Figure 6 depicts a
loss curve with downwards trend on the top right side, in-
dicating that the model learns, while the loss curve on the
top left side does not decrease. On the bottom left Figure
6 depicts the feature distributions of the latent embeddings
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that have marginal standard deviations, indicating that all
latent embeddings collapse to the same representation. On
the bottom right side the features are well distributed.

Figure 6: Example loss curves and feature distribution
plots of a model suffering from node collapsing (left) and
a model showing decreasing loss trend and distributed fea-
tures (right).

5 Results and Evaluation

The GraphDINO model with learning rate 0.0001 and
batch size 16 has the overall best ARI performance on k-
means clustering with a score of 0.495.

The GraphPAWS model with learning rate 3e-05, batch
size 32, gamma 1 and lambda 1 has the overall best ARI
performance on GMM clustering with a score of 0.527.
We repeated the training for these hyperparameters five
times. The resulting ARI scores based on GMM clustering
varied between 0.379 and 0.591. We have to consider this
variance of performance when we evaluate the results.

Table 1 compares the ARI scores of the optimal
self-supervised trained model with the optimal semi-
supervised trained model.

Self-Supervised Semi-Supervised
Training Training

Loss cross entropy mse
Learning Rate 0.0001 3e-05
Batch Size 16 32
Gamma - 1
Lambda - 1
ARI 0.495 (k-means) 0.527 (GMM)

Table 1: Results of optimal self-supervised trained model
and semi-supervised trained model. The models are
trained on lineage BAlc.

After determining the optimal GraphPAWS model we
use the same model to train on a different lineage, i.e. lin-

Figure 7: Neuron graph embeddings after each iteration
denoted in Table 2.

eage CM4, to demonstrate the usage of NetDive to itera-
tively explore the data and to feed new knowledge into the
training.

For the NetDive evaluation instead of performing cross-
validation, we train on the whole dataset and evaluate us-
ing the manually annotated CM4 samples that were partly
also used as support samples during the semi-supervised
training.

Initially we simulate the case that no labeled data
is available and therefore train with the self-supervised
GraphDINO model. We load the dimensionality reduced
latent representations of the CM4 neuron graphs into Net-
Dive and analyze the embeddings.

We explore how the ground truth clusters differ from
the predicted clusters and label samples that are most dis-
tant from the visual cluster centroids. The ground truth we
generated is for evaluation purposes only and is not avail-
able in a real use case. We then retrain a model on the
GraphPAWS architecture with the annotated samples. We
do this in three iterations and we add additional support
samples in each iteration.

Figure 7 depicts the embeddings after each iteration,
colored based on the CM4 ground truth. We cannot recog-
nize a clear subdivision into clusters. We must therefore
be cautious in assessing the positive trend in the improve-
ment of ARI scores, reported in Table 2. Table 2 denoted
the ARI scores based on k-means and GMM clustering af-
ter each iteration and lists the neuron ids of the support
samples used for each iteration.

6 Discussion and Conclusion

In this paper, we established a workflow to address the
problem of clustering graph data without initially having a
ground truth for training whilst giving the user the possi-
bility to guide the training process with minimal effort.

After the grid search that we performed in order to find
the optimal GraphPAWS hyperparameters, we had to elim-
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Self-
Supervised
[22]

Iteration
1

Iteration
2

Iteration
3

ARI:
GMM

0.152 0.145 0.143 0.225

ARI: 0.117 0.211 0.191 0.317
kmeans
#Support
Samples

- 4: 1 per
class

8: 2 per
class

12: 3 per
class

Table 2: ARI scores of incremental training with NetDive.
The ARI computation is based on manual ground truth for
evaluation purposes only. The training is performed onlin-
eage CM4.

inate models that had good ARI scores but which suffered
from node collapsing and a lack of learning capability.
These models sometimes had high ARI scores per coin-
cidence.

While we used feature distribution visualizations and
the loss curve plots to evaluate the models, these effects
should also be visible in NetDive, as the embedding space
would not divide in distinct clusters.

The results we achieved with GraphPAWS are not yet
convincing. As documented in Section 5, we see an im-
provement reflected in the ARI scores (Table 2), but this
effect is not clearly reflected in the NetDive clustering
(Figure 7).

In order to address this, it would be an interesting fu-
ture work, to further investigate the model optimization of
GraphPAWS using NetDive, as we see indicators, that the
pipeline that involves labeling support samples and restart-
ing the training is intuitive and effective. We suspect that
training on bigger datasets would eliminate outlier mod-
els and reduce the variance of performance for models
trained on identical hyperparameters, reported in Section
4.3. Furthermore we want to experiment with fine-tuning
the model after adding new support samples, instead of
training new randomly initialized models, and therefore
reduce training times. We also want to employ alterna-
tive subsampling strategies to reduce the input graphs to
a fixed amount of nodes by evenly distributing the resam-
pled nodes.

The NetDive user interface can be improved by adding
simulations that visualize the cluster changes over time
during training with color updates. It is also possible to
add more characteristics of the neurons in the details Sec-
tion and provide interaction techniques like brushing and
linking over a feature space visualization for neurons to
understand correlations between clusters and the cluster
contents. We can extend the spatial representations and
use the properties size and opacity of each data point to en-
code additional information besides the cluster label, e.g.
the certainty of the cluster assignment in the opacity and
the variance over a sequence of models in the size of the
data point.

Regarding the evaluation we want to perform user stud-

ies with experts in the field of neuroscience to see how
users outside the domain of deep learning can use visual
analytics to refine pre-trained models and which features
they are missing in the current NetDive setup.
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