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Abstract

In quantum mechanics, the wave function describes the
state of a physical system. In the non-relativistic case,
the time evolution of the wave function is described
by the time-dependent Schrödinger equation. In 1982,
D Kosloff and R Kosloff proposed a method to solve
the time-dependent Schrödinger equation efficiently us-
ing Fourier transformation. The computational physics re-
search group, led by Géza I. Márk in the Nanotechnol-
ogy Department, Institute for Technical Physics and Ma-
terials Science, Centre for Energy Research, located in
Budapest, in collaboration with Belgian researchers, de-
veloped a simulation method based on three-dimensional
wave packet dynamics for the study of electron dy-
namics in nanosystems. A simplified, interactive, two-
dimensional version for educational purposes was pub-
lished in 2020. In this work, we demonstrate two improve-
ments of the wave packet dynamical simulation software:
(i) the use of the Graphical Processing Unit (GPU), which
results in a vast (up to 50x) increase in simulation speed,
and (ii) the introduction of advanced visualization tech-
niques which are helpful to correctly interpret massive 4D
space-time wave function data sets obtained from the sim-
ulation.

Keywords: Quantum Mechanics, Wave Packet Dynam-
ics, Ray Tracing, Simulation

1 Introduction

In the first quarter of the 20th century Quantum Mechan-
ics (QM) opened a whole new window to understand our
universe. Tamás Geszti, in his book [18] writes: ”learn-
ing QM is part of the process of understanding the world,
and the person who masters it, understands the world bet-
ter”. QM can be used efficiently to model the behav-
ior of atomic particles. It describes how electrons be-
have in the orbitals around the atomic core and explains
chemical reactions. It can be used to model the struc-
ture of molecules. In nanotechnology, it is crucial to make
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quantum mechanical calculations to predict –and, in many
cases, explain– the behavior of different nanostructures.
One exciting field of study is the science of single-layer
materials [23]. These are also known as 2D materials.
One such carbon structure is called graphene [5, 16, 14].
This single-layered structure conducts heat and electricity
very efficiently, thus raising high hopes in many when it
comes to possible use-cases. Inspired by the previously
enumerated fields of application, we set the goal to study
the behavior of quantum systems by computer simulation.
Such simulations are beneficial for scientists. They use
such methods to accurately model the interaction between
particles and various potential fields. In order to accom-
plish this goal, we choose a method that uses the Fast
Fourier Transform (FFT) to efficiently calculate the time
development of the quantum mechanical wave function.
In QM, the wave function describes the state of a physi-
cal system. In the non-relativistic case, the time evolution
of the wave function is described by the time-dependent
Schrödinger equation [15]. In 1982, D Kosloff and R
Kosloff proposed a method [8] to solve the time-dependent
Schrödinger equation efficiently using Fourier transforma-
tion. In 2020, Géza István Márk published a paper [11]
describing a computer program for the interactive solu-
tion of the time-dependent and stationary two-dimensional
(2D) Schrödinger equation. Some details of quantum phe-
nomena are only observable by calculating with all three
spatial dimensions. Géza István Márk and his colleagues
have already used 3D calculations in their research work
[19, 9]. The difference is that their implementation uses
solely the Central Processing Unit (CPU) of a computer.
For visualization of the resulting probability density so far,
they used the isosurface method. Our contribution mainly
lies in leveraging the parallelization potential of the mod-
ern Graphical Processing Unit (GPU), thus significantly
boosting the calculation speed by approximately a factor
of 50 on our test hardware. We also apply state-of-the-art
volumetric visualization techniques to create pleasing and
comprehensible visuals to analyze the probability density
evolution in 3D space.
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2 Theoretical background

By examining atomic particles, scientists have observed
that such particles exhibit wave-like behavior, and in
bounded systems, they can absorb or release energy only
in discrete quanta. These matter waves have complex am-
plitudes, and can interfere with themselves.

Equation 1 is called the Schrödinger equation. It is a
linear partial differential equation, and it is the governing
equation of QM published by Erwin Schrödinger [15] in
1926. Linearity is a requirement for matter waves since,
by the definition of superposition, a general equation that
aims to describe the behavior of matter waves must be sat-
isfied not only by simple waves but also by the linear com-
bination of these waves.

d
dt

Ψ(⃗r, t) =− i
h̄

ĤΨ(⃗r, t) (1)

In equation 1, we can see that on the left side, we ba-
sically take the first derivative of the wave function with
respect to the time and on the right side we let the Ĥ =

− h̄2

2m ∆ +V (⃗r) Hamiltonian operator [6] affect the wave
function. h̄ is the reduced Planck constant. By specify-
ing an initial state and solving this differential equation,
we can predict the time development of a quantum me-
chanical wave function.

The wave function is a complex valued function. Ex-
periments show that the square of the absolute value of
the complex amplitude is the probability density associ-
ated with the particle being found in a given infinitesimally
small portion of space at a given time. For convenience
and to be sound with probability theory, we normalize
the amplitude of the wave function so that the probability
of the particle being found ”somewhere” in space equals
IP = 1. ∫

V
|Ψ(⃗r, t)|2 d3r = 1 (2)

3 Calculation method

Back in 1982, D Kosloff and R Kosloff proposed a method
[8] to solve the time-dependent Schrödinger equation ef-
ficiently using Fourier transformation. The advantage of
this algorithm compared to the Finite Difference in Time
Domain (FDTD) methods[22, 10] is the high numerical
stability of the time evolution step. In the adopted FFT
method, no signs of divergence are present even after a
large number of simulation steps. The time development
step of the algorithm has a time complexity of O(N logN)
since it only uses six FFT runs (O(N logN) each) and three
element-wise multiplication between tensors (O(N) each).
The amount of FFT runs and multiplications can be re-
duced further if we do not want to read the results of the
time development in each step. A significant speed-up can
be reached by using a parallelized implementation of the
FFT algorithm as we did by using an efficient GPU imple-
mentation. In the following part, we would like to explain

the FFT method in detail. The formal solution of equation
1 can be written in the form of equation 3.

Ψ(⃗r, t) = e−
i
h̄ Ĥ(t−t0)Ψ(⃗r, t0) (3)

where Ψ(⃗r, t0) is a specified initial state and Ψ(⃗r, t) is the
state after some δ t = t − t0 time. The problematic part
is the Hamiltonian operator in the exponent. The kinetic
and potential operators can not be commuted in general.
Hence, the exponential can not be factored. We can de-
compose the exponential by the symmetrical unitary prod-
uct [4, 3] as shown in the form 4.

e−
i
h̄ Ĥδ t = e−

i
h̄ (K̂+V̂ )δ t ≈ e−

i
h̄ K̂δ t/2 e−

i
h̄ V̂ δ t e−

i
h̄ K̂δ t/2 (4)

The error of this approximation is O(δ t3); therefore, we
have to be careful with selecting a small enough time res-
olution. When the potential energy is localized, the V̂ op-
erator is a simple multiplication by V (⃗r) function; thus the
middle part of the product can be calculated in the form of
equation 5.

e−
i
h̄ V̂ δ t

Ψ = e−
i
h̄V (⃗r)δ t

Ψ (5)

The K̂ kinetic operator involves calculating the spatial
derivative of the wave function. We can use the Fourier
transform, to make the conversion between real space and
momentum space. Relation 6 holds for the derivative of an
arbitrary f function and its Fourier transform.

ikF{ f}= F{ f ′} (6)

Taking the derivative in real space means multiplication
by ik imaginary wave number in momentum space. We
work with the ∆ = ∇ ·∇ Laplace operator, so we have to
multiply by (ik)2 =−k2. By exploiting the linearity of the
Fourier transform, we arrive at formula 7 for the kinetic
energy part of the Hamiltonian function.

K̂Ψ =
p2

2m
Ψ =− h̄2

2m
∆Ψ =− h̄2

2m
F−1{−k2F{Ψ}} (7)

where F−1 is the inverse Fourier transform. In momen-
tum space, the k wave number is trivially given as it can be
thought of as the very coordinate the function is parame-
terized with.

Actually, in equation 4, the K̂ kinetic energy operator is
in the exponent multiplied by − i

h̄ δ t/2. Using the knowl-
edge gathered from equation 7, we can now write equation
8.

e−
i
h̄ K̂δ t/2

Ψ = F−1
[

e−
ik2 h̄δ t

4m F [Ψ]

]
(8)

Having a discrete data set, Discrete Fourier transform
(DFT) can be efficiently implemented using the Fast
Fourier Transform (FFT) algorithm. The output of the
simulation is the wave function. The probability density
can be obtained by calculating the square of the absolute
value of the wave function for each grid cell. Making use
of formulas 4, 5, and 8 and plugging them into the formal
solution of the Schrödinger equation we can create algo-
rithm 1 for the time development of the wave function.
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Algorithm 1 Time advance algorithm
Ψ← initial state of the wave function
V ← localized potential
δ t← time resolution
Nt ← number of time steps
PV ← e−

i
h̄V (⃗r)δ t

PK ← e−
ik2 h̄δ t

4m

for i ∈ [0,Nt) do
Ψ(1)← FFT−1 [PK FFT [Ψ]]
Ψ(2)← PV Ψ(1)

Ψ← FFT−1
[
PK FFT

[
Ψ(2)

]]
Visualize |Ψ|2

end for

3.1 Defining Gaussian wave packets

In the algorithm, first, we have to specify an initial state of
the wave function. Erwin Schrödinger introduced the con-
cept of the Wave Packet (WP). A WP is a wavefront that
propagates and reflects as a classical particle would do and
also exhibits all the wave-like behavior described by QM.
It bridges the gap between classical and quantum physics.
The term Wave Packet Dynamics (WPD) refers to the pro-
cess of modeling QM systems by initializing WPs and ob-
serving the propagation, reflection, scattering, and inter-
ference of the WP. In our work, we use Gaussian WPs. In
this case the probability density of the WP has Gaussian
distribution [21], hence the name. The definition of such
wave function can be written in the form of equation 9.

ψ (⃗r) =
[

2
πa2

]D
4

exp
[
ik⃗0 · r⃗

]
exp

[
−|⃗r− r⃗0|2

a2

]
(9)

where r⃗0 is the initial position (with the highest probability
density), k⃗0 is the initial wave vector, and D is the dimen-
sion, which is D := 3 in our simulation. We can obtain the
width of the Gaussian WP as ∆r = a

2 .
If we do not want to visualize the probability density in

each iteration, we can further optimize the calculation by
merging the first step of the nth iteration and the last step
of the (n−1)th iteration. If we omit the visualization step,
we can do one forward FFT then perform a multiplication
between the moment space wave tensor and the P2

K kinetic
propagator calculated for a whole δ t interval, instead of
the one used in Algorithm 1 calculated for δ t/2 interval.

4 Our implementation

Using the Fourier method, we created a Python applica-
tion simulating the time development of the quantum me-
chanical wave function. We use ray tracing to visualize
the resulting volumetric probability density. The visual-
ization requires the sampling of a 3D data set on a dis-
cretized grid. This makes it impossible to fully reconstruct

the wave function that we simulated using only a finite res-
olution to begin with. In order to fight sampling artifacts,
we deploy a state-of-the-art triquadratic reconstruction fil-
ter recently proposed by Balázs Csébfalvi [2].

4.1 GPU parallelization and Just-In-Time
compilation

The Fourier method described in section 3 opens up the
possibility to implement the simulation on the GPU. Us-
ing GPU acceleration is one of our contributions to the
already existing implementation used at the Nanotechnol-
ogy Departement, Institute for Technical Physics and Ma-
terials Science, Centre for Energy Research. The Compute
Unified Device Architecture (CUDA) toolkit is often used
for parallel computational tasks implemented on the GPU
[12]. It comes with a powerful GPU based FFT imple-
mentation. To use CUDA with Python, we selected the
CuPy wrapping library [13] that provides abstraction over
CUDA. We have used Numba to access Just-In-Time com-
pilation (JIT) features. JIT means that for some parts of the
otherwise interpreted source code, the compiler performs
a runtime translation to native code. This feature is espe-
cially useful when iterating over large arrays.

4.2 Performance test

We measured the performance of our application. We used
a personal laptop to run and test the program. The sys-
tem specification of our computer is summarized in figure
1. First, we tried a CPU-only version of our simulator to

CPU AMD Ryzen 5 6600H 3.30 GHz
GPU NVIDIA GeForce RTX 3050 Ti Laptop GPU
RAM 16 GB
OS MS Windows 11 64-bit

Figure 1: System specification of the used test hardware

compare the results with the GPU accelerated implementa-
tion. The results of the comparison can be found in figure
2. Here, we tested three different configurations with vary-

Input size CPU only [iter/s] GPU accel. [iter/s]
1283 1.1 11.5
2563 0.09 6.5
5123 0.01 0.5

Figure 2: Results of a performance test using a CPU-only
and the GPU accelerated version

ing resolutions. We measured the average iteration count
per second. The test shows that by using GPU accelera-
tion, we obtained significant speed up over the CPU-only
implementation.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



5 Results

5.1 General approach and the system of
units

We used our software to perform various WPD simula-
tions. In this section, we present the results of some of
these simulations. Our simulator uses Hartree atomic units
[7]. Every quantity in the upcoming part should be inter-
preted as such. This unit system makes it convenient to
deal with quantities at atomic scale.

5.2 Double-slit experiment

First, we simulated electron scattering experiments. Scat-
tering of a particle happens when the WP of the particle
passes through some kind of a barrier with holes in it. In
our simulation, we can model the barrier as a localized
potential. The WP arrives from one side of the barrier.
While passing through this barrier, it scatters, and some of
the WP gets reflected. The portion of the WP that passed
through –suffering scattering– continues forward and con-
sequently arrives to a measuring device1. In our simula-
tion, our measuring device is a virtual canvas where we
measure the probability density. A simple scattering sce-
nario is the double-slit experiment. Here the barrier is
a potential wall with two narrow parallel slits. The WP
passes through these slits.

We performed the simulation using a distance between
the barrier and the measuring canvas of L = 30 Bohr radii,
a distance between the two slits of d = 4.0 Bohr radii, and
a WP wavelength of λ = 2π

3 ≃ 2.1 Bohr radii. The width of
each slit was a small enough value of 1.0 Bohr radii. Snap-
shots of the double-slit simulation can be seen in figure
3, where we used ray tracing to visualize the probability
density and the potential. The corresponding interference
pattern is visualized in figure 4 on a canvas of size 60×60
Bohr radius.

5.3 Diffraction by optical grating-like poten-
tial

Many different forms of diffraction can be explained using
QM. The scale at which diffraction happens ranges from
the scale of subatomic particles to larger molecules. Mea-
suring diffraction patterns is a useful tool in the hands of
scientists. It provides information about the object that
caused the diffraction. The previously presented double-
slit experiment is a 2D phenomenon because the localized
potential is independent of the z coordinate. In the third
dimension, there is free propagation. To make use of all
three simulated dimensions, we also modeled diffraction
on diffraction gratings. In optics, a diffraction grating is
a periodic 2D structure that diffracts light [17]. In QM,

1In scattering and diffraction experiments we can make the distinction
between a near field and far field solution.

Figure 3: Double-slit experiment: the wave packet passes
through the slits in the potential barrier

similar gratings can also be utilized to diffract wave pack-
ets. The holes between the potential nodes behave like
the holes in the double-slit experiment. We put 11 nodes
in each direction, forming a rectangular grid. Each node
has a Gaussian potential distribution and a maximal po-
tential of Vmax = 8 Hartree. The distance between adja-
cent grid points is d = 4 Bohr radii. The canvas distance
is L = 30 Bohr radii, and the wavelength of the WP is
λ ≃ 2.1 Bohr radii. Note that the kinetic energy of the
WP E = p2

2m = h2

2λ 2 ≃ 4.5 Hartree is less than Vmax. Oth-
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Figure 4: Simulated interference pattern of double-slit ex-
periment

erwise, the grating would not impact the propagation of
the WP sufficiently. In figure 5, we visualize subsequent
stages of the scattering.

During the simulation, many interesting interference
patterns arise. We show some of these for the 4 Bohr radii
lattice constant case in figure 6, and for the 8 Bohr radii
lattice constant case in figure 7.

5.4 Many-body interactions

One interesting use case of a higher-dimensional WPD
simulator is that the higher-dimensional space can be
used to model the interactions between multiple lower-
dimensional particles. For example, our 3D simulation is
capable of the simulation of three 1D particles. To do this,
we have to define a special interaction potential. To cre-
ate such potential, we have to think about the coordinates
in the higher-dimensional configuration space as the co-
ordinates of multiple lower-dimensional particles. If the
potential energy affecting all particles can be expressed as
a V (xa,xb,xc) function of the location of particle A and B
and C, then we can reinterpret this function as the V (⃗r) lo-
calized potential function used in the potential propagator
in equation 5. Note that here r⃗ becomes (xa,xb,xc). To
model the interaction between the three 1D particles, we
initialized a hard interaction potential that takes its maxi-
mum inside an ε radius around each particle otherwise it
is constant zero. To prevent blotting of the Gaussian WP
we also added a harmonic oscillator potential. This helps
because the Gaussian WP is the eigenstate of the harmonic
oscillator. The potential for a harmonic oscillator is given
in the form of equation 10.

V (x) =
mω2

2
x2 (10)

Here m is the oscillating mass and ω is the angular fre-
quency of the oscillation. We created a scenario where
particle A starts at 25 Bohr radii away from the center of

Figure 5: Diffraction grating experiment: the grating has a
lattice constants of 4 Bohr radii

the oscillator where the potential energy is maximal; thus,
it accelerates towards the other two particles (B and C),
consequently transferring the momentum to particle C on
the far right. The angular frequency of the oscillator was
selected to be ω = 2π

40 ≃ 0.1571 rad·Hartree
h̄ .

We placed a finite potential barrier in the middle of the
oscillator. We chose the thickness of this barrier so that ap-
proximately half of the wave packet of particle B tunnels
through the barrier, giving its momentum to particle C on
the next side of the wall. This causes C to start moving
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Figure 6: Interference pattern forming on the measure-
ment canvas during diffraction grating simulation using
lattice constant of 4 Bohr radii

with a probability of approximately 1
2 . What we just de-

scribed is called the entanglement of the states of particles
A, B, and C. Let’s perform a measurement to determine
the location of particles A, B, and C right after the pre-
viously described sequence of interactions! If we would
measure particle A to be located in the middle of the har-
monic oscillator, that means that it gave its momentum to
particle B and B has tunneled through the finite potential
barrier. If B tunneled, that also means that beyond the bar-
rier, it collided with particle C, consequently transferring
all of its kinetic energy to C. On the contrary, if the result
of the measurement determining the location of particle A
would have shown that particle A bounced back from B,
that means that B did not tunnel through the barrier. This
also means that particle C did not receive any kinetic en-
ergy and stayed stationary right beyond the barrier. The
measurement of the state of one entangled particle deter-
mines the outcome of the measurement of the other entan-
gled particles. Real-life experiments are sound with this
thought experiment [20]. The probability density plot can
be observed in figure 8.

Figure 7: Interference pattern forming on the measure-
ment canvas during diffraction grating simulation using
lattice constant of 8 Bohr radii

6 Discussion

In our work, we wrote about simulating the time devel-
opment of the quantum mechanical wave function in 3D
space. Our accomplishments are the following

• We adopted a simulation method that uses the Fourier
transform as a subroutine to efficiently calculate the
solution of the time-dependent Schrödinger equation.

• As an improvement over Géza István Márk’s imple-
mentation, we ported the Fast Fourier Transform to
the Graphical Programming Unit, thus reaching a ma-
jor speed-up of a factor of 50 for some cases.

• We combined state-of-the-art volume visualization
techniques to enhance the visual quality of the result-
ing probability density images.

• We used our simulator software to run various
Wave Packet Dynamical simulations ranging from
basic diffraction scenarios up to simulation of lower-
dimensional particles in configuration space.
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Figure 8: Stages of interactions between 1D particles in
harmonic oscillator with finite potential barrier: initial
state; particle A colliding with particle B; particle C reach-
ing maximal potential on the right side of the oscillator
with approximately 0.5 probability while it’s in superposi-
tion with the state of staying stationary next to the central
barrier

We see our work as a successful entry into the quantum
mechanical wave packet dynamics world and a good start-
ing point for further research. In the future, we want to
make it possible to calculate the eigenstates of the local-
ized potential. This would require the calculation of the

Fourier transform in the time domain to obtain the energy
state of the system. Then, iteratively converge towards
the eigenstate. There is also a possibility of incorporat-
ing electromagnetism into the Hamiltonian operator. As
we have simulated 1D particles in configuration space, we
could use a higher-dimensional space to model the inter-
action between multiple multidimensional particles. One
interesting path to go down on is to build a machine learn-
ing solution that is able to initialize a localized potential
field that guides the wave function into a desired state.
This particular idea is inspired by the marvelous work of
Barnabás Börcsök, who presented his paper about control-
ling 2D laplacian eigenfluids [1] at the Central European
Seminar on Computer Graphics in 2023. From a visualiza-
tion point of view, there are also many possibilities to im-
prove. There is room for even better reconstruction filters.
We are very hopeful about the future research potential of
this topic and are very eager to continue the fruitful work.
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