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Abstract

Deep learning methods have recently found applications in
several fields, including the processing of medical imag-
ing data. We explore the application of convolutional neu-
ral networks (CNN) for automatically processing magnetic
resonance imaging (MRI) scans in ceT1- and T2-weighted
modalities to assist doctors with executing accurate and
time-efficient tumor diagnostics.

The main challenge of the work is the multimodal regis-
tration of coronal and axial scans, which are perpendicular
to each other and, therefore, cannot be registered directly.
We use a generative adversarial network (GAN) architec-
ture to convert between modalities, making it easier to reg-
ister them. The resulting registered scans can be used for a
wide variety of further tasks, utilizing the complementary
information contained in different MRI modalities, i.e. im-
age segmentation.

Keywords: Multimodal Image Registration, Deep Neu-
ral Networks, Generative Adversarial Networks, Medical
Imaging

1 Introduction

In recent years, there has been a substantial rise in novel
techniques used for diagnostics in medicine. The introduc-
tion of artificial intelligence (AI) can speed up most of the
tasks that doctors perform daily.

Despite legal and ethical challenges, it can still greatly
aid the doctor. The most influential advantage of using AI
is the reduced time it takes to diagnose a patient since, in
general, the AI can process more data quicker than even
an experienced doctor could.

One of the main problems in the learning process of AI
is the need for a lot of data. Many tasks require using an-
notated data that must first be created by a domain expert,
which is very tedious. By creating an intelligent assis-
tant based on a neural network, we could simplify the pro-
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cess of data annotation and thus help create larger datasets
available for future usage.

In many cases, doctors need to work with multiple
modalities, providing complementary information, some-
times even acquired by using several different diagnostic
devices. Due to this, we see a new research possibility in
intermodal conversion. Although intermodal conversion
is not able to synthesize information that is not present in
the original imaging data, it can be sometimes useful, for
example for our presented co-registration method. By cre-
ating a tool that could convert images between modalities,
we could reduce the time needed to scan the patient mul-
tiple times, thus enormously reducing the waiting times to
get diagnosed.

To achieve this, we first need to be able to register
modalities correctly in the same space. Afterward, we
can add the provided labels from one modality to the sec-
ond modality. This enables the creation of neural networks
that could be trained on a compacted dataset. This could
possibly create a tool that could classify into classes that
are not that visible in the actual modality provided to the
doctor, but the neural network could pick up on this.

Our contribution lies in creating a multimodal 3D im-
age registration tool using a GAN network. The core
problem we try to overcome is the perpendicularity of
the available dataset, which makes this problem even
harder. Unfortunately, most real-world MRI data uses an
anisotropic voxel grid. The spacing of the scans is dif-
ferent on the third axis, which motivates the creation of
a custom-made image registration algorithm. To make the
problem more graspable, we reduce the complexity of reg-
istering two modalities by introducing a GAN network that
converts images between MRI modalities, making the reg-
istration process more straightforward.

2 Background

Pituitary adenomas (PA) are a type of benign tumor affect-
ing the pituitary gland, with a prevalence of 96±20 cases
per 100,000 population [8]. Despite being benign, PA can
exert pressure on surrounding tissues, necessitating cau-
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tious surgical intervention or they can cause abnormal hor-
monal production [18]. A precise diagnosis and character-
ization of PA is crucial for treatment planning and patient
care. The segmentation mask can be used for further sta-
tistical analysis of the tumor, such as classification based
on its diameter [16, 4] and shape relative to surrounding
tissues [12], or radiomics analysis, which extracts quanti-
tative features from medical images to predict patient out-
comes [9, 15].

Medical imaging plays an essential role in tumor diag-
nosis. Techniques such as X-rays, CT scans, MRI, and
ultrasound provide detailed scans for analysis. MRI scans,
in particular, offer high-resolution images acquired in dif-
ferent planes, allowing for better visualization of anatom-
ical structures and abnormalities. Different MRI modali-
ties, like T1-weighted and T2-weighted, offer varying tis-
sue contrast and information about tissue composition and
structure, aiding in the detection and characterization of
tumors [16, 4, 3].

Computer vision techniques are increasingly employed
in medical image processing for tasks such as image regis-
tration and segmentation. Image registration aligns images
from different modalities or time points, enabling accurate
comparison and analysis. Segmentation identifies and la-
bels regions of interest within images, facilitating quan-
titative analysis and diagnosis. Evaluation metrics such
as mutual information and the Dice similarity coefficient
(DSC) assess the accuracy and performance of these tech-
niques, guiding their optimization and application in clin-
ical settings [14].

The rise of deep neural networks, particularly convolu-
tional neural networks (CNNs), has revolutionized medi-
cal image analysis by enabling automated feature extrac-
tion and classification. Architectures like U-net [17] ex-
cel in segmentation tasks, accurately delineating tumor
boundaries and aiding in treatment planning. Generative
models like variational autoencoders (VAEs) [11] and gen-
erative adversarial networks (GANs) [10] offer novel ap-
proaches for data generation and augmentation, enhanc-
ing the availability and diversity of training data for deep
learning models.

2.1 Related Work

The fundamental problem with multimodal registration is
that most models try to find a good mapping between the
different intensities in the fixed and moving images. De-
pending on the actual modalities, it might be problematic
to find such mappings in some cases. However, with the
recent advancements in CNNs, there have been attempts to
facilitate the registration process by applying segmen-
tation to both modalities and subsequent image registra-
tion in the space of the segmented images.

One such work was published by Blendowski et al. [2]
The authors suggest using a convolutional autoencoder
architecture to extract shape features of both modalities.
Using the encoder part on the input volume, they extract

a 1584-dimensional shape space describing the objects in
the volume. They propose that by applying linear inter-
polations between the moving and fixed image encodings,
they can achieve iterative guidance of the image registra-
tion process. This should help the registration process by
eliminating large non-linear deformations that could oc-
cur when the algorithm tries to register the moving image
directly onto the fixed image. Their results confirm this,
since when applying direct registration, they only achieved
a DSC of 0.526, while when using the approach with iter-
ative guidance, they achieved a DSC of 0.653 [2].

Another work by Cao et al. [5] is focused on the regis-
tration of CT and MRI using models that can synthesize
images of either modality from the other image. The sub-
sequent image registration is then much more manageable.
However, especially synthesizing MRI from CT is a com-
plicated, non-linear task. The authors do not use a neural
network but rather a Multi-Target Regression Forest since,
this way, they arguably needed less training data. The for-
est synthesizes both modalities, so the registration algo-
rithm has two images (one original and one synthesized)
in both modalities. The calculations can then be done in
both modalities, where one way of transformation is in-
verse to the other way. The paper by Cao et al. [5] was used
for MRI and CT pelvic image registration. However, there
have been other papers about synthesizing other modalities
for brain-related data, even by using neural networks. In a
paper by Li et al. [13], the authors try synthesizing MRI
from CT of brains using deep learning methods. They
compare approaches based on a CycleGAN, Pix2Pix (con-
ditional GAN) model, and the U-net architecture. Unex-
pectedly, the best results were achieved using the U-net
architecture with L1 and L2 regularizations [13].

In a paper by Zheng et al. [20], the authors propose a
method for multimodal image registration using a GAN
network. Compared to the CycleGAN model used for im-
age synthesis in the previous section, the authors propose a
Symmetric registration GAN model, which also creates
a cycle-consistent mapping between the two modalities.
However, a transformation is also applied to the images,
which transforms them into the same space as an image
from the other modality. This way, even though the images
are not aligned, they can be directly compared, and the
loss can be calculated more precisely [20]. The transfor-
mation is done using Affine Transformation Regressors,
which try to predict the affine transformation parameters
between the two images they receive as input. There are
also non-linear transformation regressors, which try to pre-
dict the non-linear transformation parameters using a Vox-
elMorph model [1]. These regressors are pre-trained on
a dataset of artificial transformations with known parame-
ters. Ultimately, the proposed model generates two sym-
metric transformations, which can be applied to register
the images in either way [20].
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3 Our solution

The main contribution of our work lies in the way we use
data from multiple modalities by creating a registration al-
gorithm that could enable the usage of labels of classes
from multiple modalities, which are not greatly visible on
only a scan from one modality. A neural network can still
detect such cases, meaning full diagnostics could be pos-
sible by providing only one modality.
We have the following goals:

• to help the process of creation of new more robust
datasets,

• to register MRI scans in multiple modalities, which
could generate a dataset with labels from both modal-
ities,

• to prove the possibility of precise segmentation of
classes even if provided with an input consisting of
only one modality,

• facilitate further research in segmentation using only
one modality by providing a tool to create a dataset
with labels from both modalities.

In summary, we aim to aid the diagnostics of pituitary
adenoma by providing a tool that should enable the cre-
ation of more extensive datasets and incite more research
in this field.

To make the next sections more followable, we intro-
duce a notation of different kinds of scans. Letters C and
A show whether the scans are coronal or axial respectively.
These letters can be followed by an apostrophe ′, indicat-
ing that the image was crated by inference through the
GAN network.

3.1 Dataset

We obtained the dataset based on cooperation with a doc-
tor from the Military University Hospital in Prague, It con-
sists of Axial T2-weighted (AT 2) and Coronal contrast-
enhanced T1-weighted (ceT1, CceT 1) MRI scans in the
Nifti format. The dataset is anonymized and contains no
personal information about the patients.

In total, we have MRIs of 928 patients. However, the
label masks in both modalities are only available for 330
patients, which makes the base of our dataset. The other
340 patients scanned in both modalities have annotations
on neither (or just one) of the modalities. Annotating many
MRI scans is very time-consuming, so even in the anno-
tated samples, only a handful of 2D scans are annotated,
and others are left untouched.

Axial scans are scans in the horizontal plane. They con-
sist of 22 to 52 cross-sections with resolutions between
a quarter and a half millimeter. On the contrary, coronal
images are cross-sectional and consist of 12 to 24 cross-
sections with a resolution of half to one millimeter.

Figure 1: Comparison of axial (A) and coronal (B) scans.
Axial scans shown in coronal plane (C) and coronal scans
shown in axial plane (D)

There are several crucial problems with the dataset that
we need to solve:

• The third axis of the resolution is always significantly
worse and can be around 2 to 5 millimeters. Doctors
only create a few slices, showing key brain areas that
must be examined. This makes the MRI sampling
faster, more convenient for the patient, and more eco-
nomically feasible. Minimizing the examination time
can also decrease the spatial shift between subsequent
scans caused by patient movement.

• Another problem is that the axial and coronal slides
may not be precisely perpendicular. Therefore, no
clear transformation is available that could align these
two modalities, and thus, it has to be calculated using
image registration methods.

Label masks are available for both modalities; however,
the classes are not equivalent. It is impossible to distin-
guish some tissue types with certainty in the respective
modalities. The modality will be selected based on the
tissue type the doctors want to examine. For example, ar-
teries marked on ceT1-weighted scans may be poorly dis-
tinguishable from the surrounding tissue on T2-weighted
scans.

In addition, we use another dataset of registered coro-
nal MRI scans. This dataset consists of scans of 1157 pa-
tients, all of which were scanned in the coronal plane, half
of which are contrast-enhanced T1-weighted and the other
half T2-weighted slices. In total, this represents 10802
slices of each modality. Each sample is paired with a cor-
responding sample from the other modality, meaning that
each patient was scanned in both modalities.
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3.2 Challenges

There are several problems that we need to face:

• The moving image are just approximately perpendic-
ular to the fixed image (can differ up to 5 degrees).

• The spacing of AT 2 is too large, so we cannot inter-
polate them to an isotropic space, instead we can in-
terpolate CceT 1 scans with a smaller spacing.

• CceT 1 scans stick out of the space of the AT 2 scans, ne-
cessitating the need to find the correct subset of CceT 1.

Spacing in FI

is too large

to interpolate

Fixed image (FI) Moving image (MI)

MI is sticking

out of the FI

Figure 2: The core problems of the used dataset. (blue)
axial slices, (orange) coronal slices, (pink) expected trans-
formation of coronal slices into the space of axial slices.

3.3 Proposed pipeline

Figure 3 shows an overview of the proposed pipeline for
processing the data.

1. Transformation of

modalities using the

Nice-GAN network

AT2

3. Apply

transformation and

combine into one

space.

Two

channel

registered

dataset

Transformation

parameters

2. Image Registration

2.1 Identify the spacing and shape/size of the scans.

2.2 Interpolate C'T2 to the spacing of AT2.

2.3 Generate subsets of C'T2 with the spacing of AT2.

2.4 Identify the subset that was registered best based

on MSE.

CceT1 C'T2

2.4 Register all C'T2 subsets with AT2.

Figure 3: The data-flow chart of the processing pipeline.
Green blocks show data that is used as input, blue blocks
are data generated by the pipeline.

3.4 GAN network for intermodal conversion

The first step of our pipeline is to convert one of the modal-
ities into the other modality.

We use the Nice-GAN architecture [7, 6], an improved
version of the CycleGAN architecture. Compared to the
CycleGAN, this architecture reuses the results from the
Encoder part of the generator, which are then further pro-
cessed in the Discriminator network. This makes the train-
ing process more stable and allows the generator to learn
more complex mappings [7].

Moreover, this architecture tries to get to the same hid-
den vector (latent space) from both modalities, which
makes the mapping more consistent. This is achieved by
using a shared latent space, which is then used to recon-
struct the original image since they can switch the de-
coders to generate the other modality. So, there are two
loss functions. The first one is the reconstruction loss,
which is calculated by comparing the original and recon-
structed images of the same modality. The other loss is the
cycle loss, calculated by comparing the original image and
the image obtained by converting the original image to the
other modality and then back to the original modality [7].

We train this network on the datatest mentioned in the
last paragraph of Section 3.1.

The training was done on a machine with an NVIDIA
RTX4090 desktop GPU with 24GB of VRAM. It ran for
40,000 iterations and took about 10 hours to complete.
The results were saved after every 10,000 iterations, and
visualization was generated for the intermediate results
after every 1000 iterations. The learning rate was set to
1∗10−4 with a batch size 1 and Adam optimizer.

We used the results of our GAN to convert CceT 1 into
C′

T 2 in a slide-by-slide manner.

3.5 Our registration algorithm

The steps of the registration algorithm are indicated in
Fig. 3. In this section we describe these steps in detail.

3.5.1 Transformation of coronal to axial slices

The images were first loaded to read the Nifti files, in-
cluding their metadata. The metadata includes information
about the spacing of the scans, which is crucial for the reg-
istration process. Based on the spacing, we were primarily
interested in the third axis, which had the largest spacing.

The C′
T 2 scans were then interpolated to the same spac-

ing as the AT 2 scans. The interpolation was done by calcu-
lating the expected slice dimensions based on the spacing
of AT 2 scans and then interpolating C′

T 2 scans to the same
spacing.

We have created a helper function to rotate C′
T 2 scans by

a given angle.
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3.5.2 Slice selection

From the interpolated C′
T 2 slices, we can extract subsets

of the slices with the same spacing as AT 2 scans. We cal-
culate the number of slices that must be skipped between
each slice to achieve the desired spacing. Then, starting
from the first slice, we extract subsets of slices separated
by the calculated number of slices. This process is re-
peated until we reach the end of the C′

T 2 scans. We are
left with about 500 subsets of C′

T 2 slices, which are not
disjoint.

To optimize the registration process, we can remove
about 50% of the subsets since the C′

T 2 scans overflow
from AT 2 scans as depicted in Fig. 2.

3.5.3 Registration

The registration algorithm itself is based on finding the
best transformation of the C′

T 2 scans into the space of the
AT 2 scans. We use the Mean Squared Error metric. This
algorithm is run on each subset of C′

T 2 slices separately,
and the MSEs and transformations used to achieve them
are saved for each subset.

The registration is initialized by creating a transforma-
tion where the C′

T 2 slides are placed in the middle of the
image. Since we are working with pituitary adenoma,
which is located in the sellar region of the brain, we can
assume that the tumor is approximately located in the mid-
dle of the image. This is a good starting point for the reg-
istration process. We calculate the MSE of the C′

T 2 scans
nudged by a few pixels in each direction as well as rotated
by one degree in each way. We choose the direction with
the lowest MSE, creating a simple gradient descent algo-
rithm. The transformation is then updated in the chosen di-
rection by a number of pixels dependent on a learning rate
defined as a hyperparameter of the algorithm. However,
the learning rate decays during the registration process to
prevent the algorithm from overshooting the optimal trans-
formation.

We apply a function that calculates a new learning rate
based on the index of the current iteration and the total
number of iterations. The function is defined as seen in
Eq. 1, where i is the index of the iteration, n is the total
number of iterations, lr0 is a hyperparameter of the train-
ing process.

lri =
lr0

i
n + lr0

(1)

The best transformation is identified by comparing the
achieved MSEs of all the subsets. The subset with the low-
est MSE is chosen as the best one, and the transformation
used to achieve it is saved.

Upon successfully identifying the best subset, we can
apply the transformation to the original CceT 1 scans, and
the result can be saved as a 3D tensor with multiple chan-
nels, each representing one of the modalities.

4 Results and evaluation

In this section we present the results of our registration
pipeline. To fairly evaluate the results, we used a baseline
method to compare the results with.

4.1 Baseline multimodal registration

Figure 4: Results of image registration using the BSpline
interpolation method. The first image shows a successful
registration, while the second image was unsuccessful.

The registration was performed by an accommodated
version of the sample code from the SimpleITK image-
analysis notebooks collection [19] adjusted for 3D image
registration. First, it was necessary to interpolate the CceT 1
slices to achieve isotropic voxels via BSpline or linear in-
terpolation. Subsequently, we registered CceT 1 scans using
the Mutual Information metric since we were dealing with
multimodal images.

Regardless of the interpolation method, the registration
was unsuccessful in many cases. The results of the reg-
istration using BSpline interpolation are shown in Fig. 4.
Changing the interpolation method to linear interpolation
did not improve the results significantly. To visualize the
registration results, we overlapped the original AT 2 scans
with the CceT 1 scans (a dark horizontal rectangle).

4.2 GAN evaluation

The GAN network was trained to convert the input images
between the two domains of MRI scans. The training setup
is described in Sec. 3.4.

Since the GAN network is trained on a paired dataset,
we can directly compare the original and generated im-
ages. Fig. 5 compares the input and output images. The re-
sults are of high quality, especially for the generated ceT1-
weighted scans. For generated images of both modalities,
the overall position of the whole head and all the structures
inside the head are preserved. This is crucially important
for the registration method to succeed. The contrast and
lightness of the images are also very similar to the original
images. There seems to be more difference in the lower
part of the scans, but this is not a problem since the regis-
tration method only uses the upper part of the scans.
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I(P) - I(P') = 0I(P) - I(P') =  -1 I(P) - I(P') = 1I(P) - I(P') > 0

generated is lighter

I(P) - I(P') < 0

original is lighter

CceT1 C'ceT1 CceT1 - C'ceT1 CT2 C'T2 CT2 - C'T2

Figure 5: Comparison of original and GAN-generated coronal slices. Column 1 - CceT 1. Column 2 - C′
ceT 1 generated from

CT 2 in column 4. Column 3 - difference between CceT 1 and C′
ceT 1 scans using the depicted colorscale. Columns 4 to 6

show the same for the T2 scans. I(P) and I(P′) are the intensities of pixels in original and generated images respectively.

Figure 6: Comparison of histograms of the original and
generated scans. Left column - original scans CceT 1 and
CT 2, Right column - generated scans C′

ceT 1 and C′
T 2.

MSE of C′
ceT 1 MSE of C′

T 2

Mean 547.00 856.25
St. Dev. 181.11 292.48
Min 244.16 434.10
Lower quartile 437.74 724.79
Median 520.95 823.96
Upper quartile 612.72 931.70
Max 2969.93 4578.64

Table 1: Overview of the distribution of achieved MSEs
by the GAN network over the paired dataset.

Based on the histograms displayed in Fig. 6, we can
see that the intensity distribution of the generated images
is very similar to the intensity distribution of the original
images. This is a good sign since it means that the GAN

network can preserve the intensity distribution of the in-
put images as the generator network is trained to produce
images that are indistinguishable from the original images.

Additionally, we compared the original and generated
slices using the MSE metric. The distribution of these val-
ues is shown in Table 1. Similarly to our previous observa-
tions, we can see that the differences are more significant
when generating T2 scans.

4.3 Registration method evaluation

The registration method described in Sec. 3.5 uses coronal
slices converted from CceT 1 slices to C′

T 2 slices. We use
the MSE of the C′

T 2 and the original AT 2 slices to identify
the correct subset of C′

T 2 slices.

Figure 7: Cumulative MSEs over the subsets: Simple nor-
malization (left) vs. Histogram matching (right). We can
use this to identify the correct subset of matching images.

In Fig. 7, we can see the MSEs of all the subsets. We
omitted the MSEs of the subsets that were removed from
the registration process due to sticking out of the fixed im-
age, as shown in Fig. 2. These subsets would show an even
higher MSE than the ones shown in the chart.

The chart shows the cumulative MSEs of the subsets,
which are calculated as the mean of the MSEs of the indi-

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



vidual slices in the subset. As seen in Fig. 7, we can effort-
lessly identify the correct subset of C′

T 2 slices by looking
at the global minima of the cumulative MSEs.

The correct subset has an index of about 100. The reg-
istration results are shown in Fig. 8 over several slices of
the selected subset.

Figure 8: Registration results. Four AT 2 slices of the same
patient overlaid with the generated C′

T 2 slices.

The registration method was able to align the two im-
ages very well. The structures of the brain are aligned al-
most perfectly. The only visible differences are the graini-
ness and lightness of the images. The interpolation of C′

T 2
slices to the same spacing causes graininess, which could
be solved by applying some denoising techniques.

We opted for using just a simple normalization to the
images, which converts the intensities of the produced im-
ages to the same range of intensities as the original im-
ages. Additionaly, we tried using a more sophisticated nor-
malization technique, such as histogram matching, which
matched the intensity distributions of the generated and
original images over the area where we have both modal-
ities. However, as depicted in Fig. 7, this approach didn’t
yield results that would make the process of the global
minima identification clearer, and the registration algo-
rithm took significantly longer to complete. Due to these
reasons, we see no real benefit in a better normalization
process.

Finally, we evaluate the achieved MSEs over a set of 77
patients. The registration process yielded in most of the
cases relatively low MSEs as seen in Table 2 and Fig. 9.
There have been some results that didn’t converge to the
correct results. Upon inspecting results of all 77 patients,
we have found only 4 results that were noticeably mis-
aligned, all of which were in the top 6 results with high-
est MSEs. We therefore evaluated, that the results with
an MSE higher than 6× 106 should be discarded as non-
successful. This leaves us with 73 successful registrations
meaning a 94,81% success rate.

MSE of the registration

Mean 2.811766×106

St. Dev. 1.980013×106

Min 5.884174×104

Lower quartile 1.464993×106

Median 2.275179×106

Upper quartile 3.716739×106

Max 1.037747×107

Table 2: Overview of the distribution of achieved MSEs
over the registered dataset.

Figure 9: Histogram of achieved MSEs over the registered
dataset.

5 Conclusions

We managed to create a comprehensive review of the main
challenges of this field and gain an overview of the re-
lated state-of-the-art works. We ran several experiments
that directed our research toward solving the most press-
ing issues. Moreover, we have employed a GAN network
to convert images between MRI modalities. This helped
to create a more robust image registration algorithm that
yields respectable results of an acceptable accuracy.

Creating an excellent multimodal image registration is
an important step that enables the fusion of the masks from
the axial and coronal slides and, thus, the training of a seg-
mentation network to segment tissue classes only marked
for the other type of modality. As part of future work, we
aim to create a segmentation CNN trained on the created
registered dataset as a proof-of-concept of segmentation
capabilities beyond what is possible when using scans of
multiple modalities separately.
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