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Faculty of Informatics and Information Technologies
Slovak University of Technology

Bratislava / Slovakia

Abstract

Neural networks and deep learning are now widely used
approaches for solving tasks in multiple domains, includ-
ing computer vision. In the field of medical image pro-
cessing, these approaches can bring efficient and fast di-
agnosis. However, there is a challenge associated with the
lack of annotated training data needed to train the models.
The collection and especially the annotation of such data
can be time-consuming and expensive. In this work, we
explore the use of generative models for medical data syn-
thesis that could effectively complement existing training
sets and improve the performance of classification models.
The main area of our research is the synthesis of atypical
cells, which is the main signal of a tumor. Nuclear atypia is
usually manifested by enlarged cells and irregular shapes,
which are the features we focus on. We take advantage
of diffusion probabilistic models that are used for guided
synthesis of samples either from a segmentation mask or
an atypia class. This research contributes to the integration
of machine learning techniques in healthcare and evaluates
the presence of synthetic data in training sets.

1 Introduction

Breast carcinoma is one of the most common breast cancer
variants, causing deaths in million-scale across the world
every year. The main procedure in grading this cancer is
nuclear atypia scoring. In pathology, the term ”atypia” de-
scribes a deviation from the typical or normal morphol-
ogy. Atypia describes unusual cell alterations that can im-
pact stromal, epithelial, myoepithelial, and other connec-
tive tissue cells, including endothelial cells. An essential
component of the histological grading system for both in
situ1 and invasive carcinomas is the classification of ep-
ithelial cell atypia as low, intemediate, or high. Score 1
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1”In situ” describes a condition where abnormal cells are present but

have not spread to nearby tissues. Ductal carcinoma in situ (DCIS) is a
type of breast cancer that is contained within the milk ducts and has not
spread beyond them.

describes nuclei that are similar in size of benign epithe-
lial cell nuclei[5] (less than 1.5 times their size) and show
minimal pleomorphism (Pleomorphism is the variation in
cell or nuclear shape and size.) that are either invisible
or barely noticeable. Score 2 nuclei are moderately larger
(1.5–2 times the size of benign nuclei) and exhibit mild to
moderate pleomorphism with visible but small and subtle
nucleoli. Score 3 nuclei are significantly larger (greater
than twice the size of benign nuclei) and display vesicu-
lar chromatin, pronounced pleomorphism, and prominent
nucleoli. While these characteristics collectively help de-
termine the degree of atypia in invasive breast carcinoma
(IBC) and other areas of breast pathology, evaluating indi-
vidual features remains subjective, and the relative weight
of each characteristic is not clearly established. Currently,
this is done manually by pathologists, meaning there is
susceptibility to errors and disagreement between special-
ists. Therefore, there is a strong motivation for developing
automated methods to solve the problem of manual scor-
ing.

Recent advances in machine learning, particularly gen-
erative neural networks, offer the potential to augment his-
tological datasets with synthetic images, reducing reliance
on manual annotations and improving consistency in anal-
ysis. This is especially important in histology, the study
of the microscopic structure of tissues and cells, where de-
tailed examination of histological sections provides crit-
ical insights into cellular composition, organization, and
spatial relationships [8].

Progress in computational pathology, prognostic evalu-
ations, and computer-aided diagnosis could greatly ben-
efit from automated histological image analysis. How-
ever, training neural networks for such tasks requires large,
well-annotated datasets [3]. A major challenge in apply-
ing deep learning methods in this domain is the scarcity
of publicly available histological data. Generative ap-
proaches, by synthesizing realistic and annotated histolog-
ical images, offer a promising solution to this limitation,
enabling the development of more robust and reliable ma-
chine learning models.

The main goal of this research is to evaluate how well
generative neural networks produce synthetic annotated
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data that may enhance real histological datasets and en-
hance model performance. In particular, the research ef-
fort intends to use performance indicators to compare the
results of neural networks trained on these created datasets
with those learned on standard datasets.

2 Related work

Deshpande et al.[4] introduced an interactive framework
for generating tissue images based on user-defined gland
layouts. The system utilizes generative adversarial net-
works for tissue image synthesis and latent diffusion mod-
els for glandular mask generation. By incorporating user
input for gland positions and sizes, the framework pro-
duces realistic tissue structures, considering cancer type,
and employs a VQ-VAE decoder for refining glandular
masks.

Cong et al.[2] proposed a Color Adaptive Generative
Adversarial Network (CAGAN) for stain normalization in
histopathology image analysis. Their method leverages
semi-supervised learning with consistency regularization
and co-training, enabling the model to learn from unla-
beled data. The results demonstrate that CAGAN im-
proves color consistency with the target domain, enhanc-
ing classification performance.

The study Synthesis of diagnostic quality cancer pathol-
ogy images by generative adversarial networks[7] eval-
uates the use of Progressive GAN (ProGAN) to synthe-
size high-resolution pathology images for 10 cancer types.
ProGAN starts with low-resolution image and iteratively
adds details as training continues. A survey of pathologists
confirmed that synthetic images were visually hard to dis-
tinguish from real ones and achieved comparable classifi-
cation accuracy. Furthermore, adding synthetic images to
training datasets enhanced the performance of deep learn-
ing models, highlighting their potential for AI training in
rare cancer diagnosis, quality assurance, and competence
testing.

3 Solution Design

In this section we specify details of our approaches - data
preparation, design of our experiments and evaluation.

3.1 Data preprocessing

For training, we used a publicly available dataset. The
MITOS-ATYPIA-14 dataset[1] contains an annotated set
of breast cancer biopsy (Figure 1) collected by the team of
Professor Frédérique Capron at Pitié-Salpêtrière Hospital
in Paris, France. Frames are used for nuclear atypia scor-
ing by three levels. Starting from score 1, which means
low grade atypia, to moderate grade atypia annotated as
score 2 and high grade atypia labeled as score 3.

Figure 1: MITOS-ATYPIA-14 tissue sample. Regions
highlighted with green color are nuclei.

These frames have resolution 1539 × 1376 pixels.
Firstly, each frame was cut to several smaller images ac-
cording to the resolution of output images, in our case 128
or 256, without overlapping. Each frame has a correspond-
ing class, which was inherited from the original picture.
Segmentation masks are needed for a model’s input, there-
fore we needed to create these masks to get information
about sizes and positions of nuclei in each sample. Utiliz-
ing the HD-Yolo algorithm, this process facilitates nuclei
segmentation across whole slides. It includes a pretrained
object detection and segmentation model[9] that processes
image patches, identifies and segments nuclei. This pre-
trained model outputs segmentation masks with informa-
tion about nuclei locations and shapes. These masks are
used as input in our second generative model.

3.2 Classification network

Multiple methods were investigated in order to efficiently
synthesize annotated histological data. To compare per-
formance of different models and quality of original and
enriched datasets, we trained a classification network to
assign atypia class to every image. In this case, we used
EfficientNet, more specifically EfficientNetV2[11], which
is a family of convolutional neural networks, providing a
good parameter efficiency and training speed compared to
other known architectures, while maintaining similar ac-
curacy. For nuclei synthesis we used denoising diffusion
probabilistic models[12] with U-net architecture, but with
two distinct approaches.

3.3 Training model per atypia class

In generative neural networks, diffusion models—which
draw inspiration from non-equilibrium thermodynam-
ics—have shown great potential, especially for image gen-
eration. These models simulate the diffusion process, in
which realistic samples are produced by reconstructing
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data in reverse after it has been gradually converted into
noise by a forward process. Diffusion models, in con-
trast to conventional generative models like GANs, use a
Markov chain of iterative refinements, which enables them
to accurately represent complex data distributions. The
computational inefficiency of denoising diffusion proba-
bilistic models (DDPMs), that require thousands of re-
peated steps to produce a single high-quality sample, is
an important drawback. Despite promising better output
quality, this method is much slower than GANs, which
makes it impractical for real-time applications. Although
this drawback, diffusion models have become useful in
domains where accuracy and variety of data are essen-
tial, such as medical imaging.

The first model based on U-net architecture[10] gener-
ates nuclei images based on the atypia class. Since this
model has no input and was trained on a specific class of
images, a separate model was trained for each of the three
atypia classes. Results from these models were evaluated
in our first experiment, which involved incorporating syn-
thetic data into the training set of a classification model
and comparing performance metrics.

First, raw images are split into smaller samples, and an-
notations are assigned. A classification model is trained
on the original dataset, and its performance metrics are
recorded. Simultaneously, a generative model is trained to
synthesize new samples, which are then used to create an
enriched dataset. A second classification model is trained
on this expanded dataset, and its performance is compared
to the original. The goal is to determine whether synthetic
images improve classification accuracy and model robust-
ness. Detailed diagram of this approach is in the Figure
2.

3.4 Segmentaion guided synthesis

Another approach for synthesizing annotated images is to
train a network that takes a segmentation mask as input to
influence shape, size, and position on a frame[6] (Figure 3.
The model learns to reconstruct images based on provided
segmentation maps rather than producing images uncondi-
tionally, ensuring that structures match the intended anno-
tations. The diffusion model is guided to adjust anatomical
details by concatenating the segmentation mask with the
input at each denoising step during training. This allows
the network to generate realistic histological images while
preserving spatial relationships dictated by the mask. Ta-
ble 1 presents the evaluation metrics. The Frechet Incep-
tion Distance (FID) was used to assess the similarity be-
tween synthetic and real images, while the Intersection
over Union (IoU) measured the consistency between the
input mask and the mask generated from the synthetic im-
age.

Figure 2: This experiment evaluates the impact of syn-
thetic data on classification performance.
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Figure 3: Segmentation-guided image generation: From
original sample we created segmentation mask, which was
provided to network. Last image shows result sample from
the same mask.

4 Results

Results from the dataset enrichment experiment are pre-
sented in Figure 4. The experiment began with approx-
imately 70,000 images, and in each of the 14 iterations,
8,000 synthetic images were incrementally added to the
dataset. Evaluation metrics were recorded at the end of
each training phase. The results indicate an improvement
in performance, with an optimal balance observed when
synthetic samples constituted arround 50% of the whole
training set.

In the Figure 5 is a complete pipeline for diffusion
guided by segmentation masks. Firstly, we created seg-
mentation masks for all input samples. Then, we trained a
model to synthesize an image with nuclei to match the in-
put mask. We trained models with image sizes of 128x128
and 256x256. Evaluation was conducted using Frechet In-
ception Distance and Intersection over Union, as further
detailed in Figure 5.

Resolution Epochs Batch Size FID↓ IoU↑
128x128 300 8 133.12 0.182
256x256 300 8 91.13 0.174

Table 1: Comparison of training results for different reso-
lutions.

5 Conclusion and Future Work

This study’s main goals were to create models for the
synthesis of annotated histology data and determine how
artificial data augmentation affected classification accu-
racy. The study focuses on nuclear characteristics, such
as enlarged nuclear size and irregular shapes, as impor-
tant markers of cellular abnormality. We selected diffusion
models and used the MITOS-ATYPIA-14 datasets due to
their ability to produce high-quality synthetic images. Nu-
clear atypia was classified using the EfficientNetV2 classi-
fication network, which was used as a benchmark to mea-
sure the quality of the dataset. We investigated two synthe-
sis strategies: one that used segmentation masks to control
nuclear morphology, and another that used diffusion mod-
els trained per atypia class. Based on the experiments, the
presence of synthetic samples had a limited but noticeable
impact on classification performance. This impact may
have been caused by subjective pathologist annotations
and small inter-class differences. While highlighting the
necessity of careful dataset annotation, these findings also
demonstrate the potential of synthetic histological data to
enhance deep learning applications for pathology.

In the near future, we plan to analyze entire slide im-
ages from the Faculty of Medicine, Comenius University
Bratislava. In addition to these samples, we have received
annotations from three different pathologists. These anno-
tations define various cellular features, including nuclear
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Figure 4: The first experiment, focused on synthesizing images based on atypia class, was evaluated using a classification
network. Initially, the network was trained exclusively on real samples. Subsequently, synthetic samples were incremen-
tally introduced into the training set.

Figure 5: Segmentation-guided image generation - evalu-
ation.
A sample was synthesized using our pre-trained model
from input mask. From this sample, another mask was
created. By comparison of two masks, metric Interception
over Union was used to determine the model’s ability to
place nuclei on specific locations.

deformations (pleomorphism), cell division (mitosis), and
the formation of trabeculae.

Our first step is to extract the annotated regions and
group the data based on the type of annotation. In ad-
dition, we will use the remaining regions to obtain regular
samples for comparison. After preprocessing, our aim was
to train a model capable of synthesizing individual nuclei,
both regular and exhibiting varying degrees of atypia.
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