
Mobile Application for Supporting and Motivating Yoga Practice

Adriana Buchmei*
Supervised by: prof. Ing. Adam Herout Ph.D.†

Faculty of Information Technology
Brno University of Technology

Brno / Czech Republic

Abstract

Sport and physical activity, especially yoga, are becom-
ing more popular, and the demand for effective apps to
support exercise comes with increasing technological ad-
vances. This paper focuses on designing and testing a user
interface for a mobile app for yoga practitioners that al-
lows users to track their progress, motivate themselves, ac-
cess past training sessions, and take pictures during train-
ing without having to think about the phone. The design
was iteratively tested with potential users and continuously
improved based on their feedback. A prototype of the
application was implemented for the Android platform in
Kotlin using the Jetpack Compose framework.

Keywords: Mobile App, User Interface, Usability, User
Experience

1 Introduction

This work aims to create an application that supports and
motivates yoga practice by allowing users to easily track
their progress, capture photos during workouts, and mon-
itor improvements over time. While many existing so-
lutions provide workout plans and related features, this
app focuses on offering users a seamless way to docu-
ment and review their practice without interfering with
their workout plans. The development process follows a
User-Centered Design (UCD) methodology to ensure the
app meets user needs and expectations. In Section 2, we
analyze existing applications and define a task statement
based on user research. In Section 3, we explain the app’s
design and visual identity. Section 4 delves into the de-
tails of individual app components, such as UI design and
image processing. Finally, Section 5 covers the gallery’s
application components like data handling, streak score
computation, and gesture handling. The application is cur-
rently being tested on Google Play.

*xbuchm03@stud.fit.vut.cz
†herout@fit.vut.cz

2 Analysis and Task Statement

The growing interest in yoga has led to numerous mo-
bile apps for practicing yoga, such as Daily Yoga [2],
Yoga for Beginners [5], and Zenia [11]. These apps
provide workouts, lesson plans, and audio and video in-
structions. However, none of them provide personalized
progress tracking, where the user can see their photos in
a pose over time, easier real-time photography during a
yoga workout without having to think about the phone, or
integration of multiple motivational elements in the appli-
cation. This gap opens the space for an app that fills these
needs, providing a more tailored and engaging yoga expe-
rience.

2.1 Analysis of Existing Applications

A review of existing apps highlights their strengths and
limitations:

Key Features: Existing yoga applications provide
structured training plans, instructional content, and sta-
tistical progress tracking, such as the number of sessions,
time spent, and calories burned. They also offer a calendar
for tracking workout history and setting reminders.

Identified Gaps: Despite these features, current solu-
tions lack visual progress tracking. They do not allow
users to document their training process with photos or
track qualitative improvements in pose techniques. Moti-
vation is primarily driven by numerical goals rather than
visual progress, which can be a more effective motivator
for many users.

Thus, there is a need for an application that enables
users to capture photos during training, store them, and
track their progress over time by visually comparing their
pose improvements.

2.2 Requirements Analysis

Understanding user needs is critical in developing any user
interface, especially when targeting a diverse audience. A
combination of methods was employed to uncover the ex-
pectations and desires of potential users, including user
interviews1, questionnaires, and observational studies of

1User Interviews

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://www.nngroup.com/articles/user-interviews/


Figure 1: Wireframe and final design of the camera set-
tings screen. The screen allows users to select individual
poses or choose all poses they want to be captured.

users interacting with similar applications. These insights
helped define the core features necessary for the app to
fulfill user expectations effectively: hands-free real-time
pose capture with user-defined preferences (Pose recogni-
tion [10]), saved workout history and calendar integration
(Photo and data logs), visual comparison of poses over
time (Progress tracking), and prompts, reminders, and
streak tracking to encourage consistency (Motivational
tools).

2.3 Development and Testing Approach

The development of the application followed the User-
Centered Design (UCD) methodology [8], focusing on the
needs and goals of the users throughout the design and
development process, which included: User Research:
identifying user needs through interviews and surveys;
Prototyping and Development: designing wireframes
and interactive models in Figma2, followed by develop-
ing Android prototype; User Testing: conducting usabil-
ity tests with diverse participants; Iteration: refining fea-
tures based on continuous feedback.

Testing was performed by a group of 9 participants who
represented a variety of experience levels with yoga and
mobile applications. Details on the testing of specific parts
are described in the following sections.

2https://www.figma.com

Figure 2: Some design elements, including the color
palette, fonts, and UI components, create a cohesive user
experience.

3 App Design and Visual Identity

The app’s design follows modern UI principles, empha-
sizing clarity, aesthetics, and functionality to create an in-
tuitive and engaging experience inspired by Steve Krug’s
Don’t Make Me Think! [6].

Incorporating Material 3 design principles3, the app
maintains a cohesive, responsive, and scalable layout for
optimal usability across different devices. Wireframes out-
lined the app’s structure and flow before transitioning to
high-fidelity prototypes in Figma, ensuring an intuitive
and efficient user experience. This iterative approach al-
lowed for continuous improvements based on feedback,
resulting in a refined and user-friendly UI (Figure 1).

The color palette balances energy and calmness: Dark
Green symbolizes stability and growth, Orange adds en-
ergy and motivation, and Light Beige enhances readability
and contrast. Montserrat [9], a modern sans-serif font, en-
sures readability and scalability across various screen sizes
(Figure 2).

A cohesive visual identity was achieved through uni-
form illustrations of yoga poses, reinforcing the app’s aes-
thetic. Figma, Adobe Illustrator, and Photoshop4 were uti-
lized for wireframing, vector illustrations, and visual re-
finements.

4 User Interface Details and Image
Processing

The app uses the modern Jetpack Compose framework [3].
This declarative UI toolkit provides a flexible and intuitive
way to create the UI, thus simplifying the development and

3https://m3.material.io
4https://www.adobe.com/uk/creativecloud.html

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://www.figma.com
https://m3.material.io
https://www.adobe.com/uk/creativecloud.html


Figure 3: The homepage of the application displays 1)
streak score, 2) total training time, 3) calories burned, 4)
last session details, 5) daily challenges, 6) planning of fu-
ture activities.

maintenance of the application. With Jetpack Compose, it
is possible to create dynamic and responsive screens with
less code compared to traditional XML solutions. The dif-
ferent parts of the user interface are described in the fol-
lowing sections.

4.1 Dashboard

Upon opening the application, the user first sees the home
page, providing quick access to key features through a
dashboard and navigation bar (see Figure 3). The dash-
board includes several widgets, explained below:

1. Streak Score: After consulting with users, it was
found that counting days often leads to demotivation
if a user misses a day. Based on these findings, the
task was to find a more effective approach. As a re-
sult, a system was introduced where the score of a
series is calculated as a percentage based on the com-
pletion of a set target. This approach prevents frustra-
tion and promotes better motivation to achieve goals;
see the Section 5.2 for a more detailed description.

2. Total training time: The section showing the total
time spent training over the last seven days provides
an overview of the duration and consistency of the
exercise.

User

<PK> id

<FK> dashboardId
...

Dashboard

<PK> id

widgets

1

1

User Score

<PK> id

<FK> userId

score
...

1 *Activity

<PK> id

<FK> userId
...

*

1

Figure 4: Entity-Relationship diagram of the data model.
Each user has a personal dashboard containing editable
widgets. The User Score table stores the streak score,
while scheduled activities are recorded in the Activity ta-
ble.

3. Calories burned: The panel informs the user about
the approximate energy expenditure during the day,
while the displayed graph shows the number of calo-
ries burned over the last seven days.

4. Last Session details: The user can access the previ-
ous session quickly.

5. Daily Challenges: Here are the ideas for user chal-
lenges that provide additional motivation to meet
training goals (although this section has not yet been
implemented).

6. Planning of future activities: The application al-
lows user to add planned sessions while their visual
display provides an overview of upcoming activities.
Alerts for upcoming sessions can be set individually,
allowing users to customize when they want to be no-
tified before the exercise begins.

After talking to participants, it was confirmed that each
user preferred a different dashboard layout. Based on these
findings, we added an edit mode to the app that allows
users to add, remove, or rearrange widgets according to
their needs and preferences.

Figure 4 illustrates the data model structure. It repre-
sents how each user interacts with their dashboard, which
includes customizable widgets and stored activity data.

4.2 Session History

Another app functionality is session history, allowing
users to view previous workouts by date and edit their de-
tails. This screen displays the workout history, where the
user can select a specific date via the horizontal calendar or
the detailed calendar that opens by clicking on the icon at
the top of the screen. Once a date is selected, the details of
that day’s workout are displayed, including the poses prac-
ticed and a timelapse bar that visually displays the differ-
ent categories of poses. This screen also includes a notes
section where the user can add comments and an emoji
button to change the emoji associated with that workout.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: User session history view, allowing users to
browse past workouts by date, view details, add notes, and
assign an emoji to each session.

Each pose is linked to photos of the user during the work-
out. Viewing these images is explained in detail in Sec-
tion 5.3. This functionality allows users to go back to their
past workouts and view them in detail. Figure 5 shows a
screenshot of the user interface.

Users appreciated the addition of a timelapse bar, which
displays the progress of the exercise using colors, with
each color representing a different yoga category, such as
strength, flexibility, relaxation, and balance.

The data model for the Session entity represents a user’s
training unit in the database (Figure 6). Each Session is
uniquely identified by a primary key (id) and assigned to
a user via a foreign key (userId). A session can include
multiple exercise poses, each referencing a specific pose.
Captured images of these poses are stored and linked ac-
cordingly.

4.3 Capturing

The application is designed to provide automatic photo
capture during yoga sessions, allowing users to track their
progress visually. The main screen of this functionality,
CaptureScreen (Figure 7), displays the recording inter-
face using CameraX5. Users can easily switch between
the front and rear cameras and start or stop recording ac-
cording to their preferences. The camera is automatically
initialized and shows a preview using PreviewView. The

5https://developer.android.com/media/camera/camerax

Session

<PK> id

<FK> userId
...

Session Pose

<PK> sessionPoseId

<FK> sessionId

<FK> poseId
...

Pose

<PK> id
...

Pose Image

<PK> imageId

<FK> userId

<FK> sessionPoseId
...

User

<PK> id
...

1

*

1

1..*

*

1

1..*

1

*

1

Figure 6: ER diagram for user sessions showing key entity
relationships. A Session links to a User via userId and
includes multiple Session Poses. Each Session Pose ref-
erences a Pose and connects to one or more Pose Images
captured during training.

user has to allow access to the camera. If the user does not
grant permission, a notification will appear.

The capture settings select the yoga poses the user wants
to capture while practicing yoga, as shown in Figure 1.
The screen contains categories of poses such as strength,
balance, flexibility, and relaxation. The application rec-
ommends poses that the user has already practiced in past
sessions in the section of favorite poses, which speeds up
the process of finding poses. The user can mark individual
poses as selected using checkboxes or select all at once.
The search field allows users to filter poses by name. The
top bar contains a back button and a button to confirm the
selection.

4.4 Progress Tracking

The application allows users to view their photos sorted by
individual poses they performed in past sessions. The first
screen displays a list of yoga poses the user has practiced
(Figure 9). Upon selecting a pose, the gallery of captured
photos for that pose opens (Figure 10). Tapping on a photo
opens a detailed image view. The gesture handling in these
screens is more explained in Section 5.3.

A key gallery feature is progress tracking, which selects
multiple photos from an extended period, enabling the user
to compare their improvement visually. A “See Progress”
button appears if enough progress data is available, allow-
ing the user to access a detailed comparison.

When tracking progress in a yoga pose, consistency
in photo alignment is crucial to ensure clear visibility of
changes in posture. To achieve this, we captured images at
different stages of Downward Dog practice and systemat-
ically processed them to align key body points. The align-
ment was performed manually using Adobe Photoshop,
with a fixed pelvic point as the primary reference. This
ensured that the pelvis remained at the same level across
all images, preventing distortions in posture analysis.

We aligned the feet and hands along a single baseline to
maintain body proportions accurately. This approach al-
lowed us to track subtle changes in spine angle, weight

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://developer.android.com/media/camera/camerax


Figure 7: Camera screen with camera preview. There are
two buttons on the top bar – one to go back and the other to
open the capturing settings. At the bottom is a large button
to start/stop capturing and an icon to switch cameras.

distribution, and overall body alignment over time. By
keeping the reference points consistent, we minimized vi-
sual inconsistencies that could arise from slight shifts in
camera positioning or body posture during different prac-
tice sessions. This method proved helpful in analyzing im-
provements in stability and flexibility without introducing
distortions that could misrepresent progress (see Figure 8).

One of the main challenges in manual alignment is the
effort required to adjust each image, especially when the
practitioner is captured from a different angle. In such
cases, perspective correction tools were applied to align
the images more accurately.

As part of the future functionality of this application, we

Figure 8: Aligned images of Downward Dog pose, ensur-
ing consistent pelvic positioning and limb alignment for
accurate progress tracking.

Figure 9: View of practiced poses. Users can browse a
list of previously performed yoga poses, search for spe-
cific ones, and filter by categories like strength, balance,
flexibility, and relaxation. Each pose is displayed as a card
that opens a gallery when clicked.

plan to implement automatic image alignment using neu-
ral networks specialized in pose estimation. Models such
as MediaPipe Pose6, MoveNet7, or ML Kit Pose Detec-
tion8, can detect key joints—including the pelvis, knees,
shoulders, and wrists. By leveraging these technologies,
the app will dynamically align and crop photos, elimi-
nating the need for manual adjustments while improving
progress tracking accuracy.

After conducting user interviews, we gathered insights
into how users prefer to visualize their progress. The
general preference was to track progress over at least six
months, with a minimum of seven images. Users preferred
having fewer older photos and more frequent recent ones,
as this distribution better highlights their improvements.
Regarding labeling, some users found a simple date cap-
tion (e.g., October 26) sufficient, while others preferred a
relative time format (e.g., taken six months ago). Further
user testing is required to determine the optimal approach,
as both labeling methods received similar support.

This functionality helps users analyze their progress in
detail, monitor technical improvements, and stay moti-
vated to continue their growth.

6MediaPipe Pose
7MoveNet
8ML Kit Pose Detection

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://ai.google.dev/edge/mediapipe/solutions/guide
https://www.tensorflow.org/hub/tutorials/movenet
https://developers.google.com/ml-kit/vision/pose-detection


Figure 10: Image gallery screen. Displays photos of a se-
lected pose, sorted by date. Users can toggle favorites,
archive images, or progress view and tap for a detailed im-
age view.

5 Key Application Components

This section describes selected parts of the application im-
plementation related to working with data, gestures, and
other interesting aspects of the code.

5.1 Data handling and UI Integration

The application is developed in the MVVM (Model-View-
ViewModel) architecture [1], which ensures a clear sepa-
ration of application logic from the user interface, thereby
improving the maintainability and testability of the code.

The application utilizes a local Room database [4], en-
suring all user data is stored securely on the device. This
approach enhances user privacy by preventing data from
being transmitted over public networks or stored on exter-
nal servers. As a result, users have complete control over
their information, minimizing the risk of unauthorized ac-
cess or data breaches.

The application uses asynchronous data processing and
reactive UI updates, ensuring smooth and efficient work
with data. An essential element is the combination of
ViewModels9 and LiveData10 (or StateFlow11), which
store, retrieve, and reactively display data in the UI. When

9Android ViewModel docs
10LiveData overview
11StateFlow overview

the search query or category filter changes or the user
chooses another image from the gallery, the UI adapts im-
mediately without a manual refresh. The navigation be-
tween screens was implemented using NavController12,
with passing parameters such as the identifiers.

5.2 Streak Score

The application features a Streak Score system to consis-
tently motivate users to maintain practice. Unlike tradi-
tional streak mechanisms that track the number of consec-
utive days of exercise, this system uses a percentage score
calculation. This approach is more flexible and adapts to
the user’s preferences, better reflecting their training regu-
larity.

The Streak Score is based on the number of workouts
per week that the user sets as their target. Based on this
target, the score changes dynamically: if the user exercises
regularly according to their plan, their streak increases in
percentage, or if they exercise less frequently than their set
goal, the score gradually decreases.

This system draws inspiration from the Loop Habit
Tracker app [7], which incorporates an advanced streak
score calculation system based on the frequency of per-
forming an activity. The concept was adapted for this app
to track exercise activities more effectively. The formula
considers how often a user exercises over the past seven
days, ensuring that consistency is rewarded while prevent-
ing drastic score drops.

To further refine this approach, the formula includes a
boost factor for users who exceed their target training fre-
quency. If the user exercises significantly more than their
target, they receive a higher score increase. This mecha-
nism encourages users to maintain consistency while re-
warding occasional extra effort. The final streak score is
calculated as follows:

x =
√

t
13

, (1)

M = 0.5x, (2)

B =


1.3, if f ≥ 1.5t
1.15, if f ≥ t
1.0, otherwise

, (3)

S = Sp ×M+ c× (1−M)×B (4)

where: f is the frequency (how many times the user ex-
ercised in the past seven days), t is the target training fre-
quency per week, x is the exponent used in the multiplier
calculation, M is a multiplier based on frequency, Sp is the
previous streak score, c is the checkmark value (1 if the
user exercised, 0 otherwise), B is the boost factor, which
increases the score if the user trains more than their target,
S is the final computed streak score, ensuring that it never
exceeds 100%.

12NavController docs

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/kotlin/flow/stateflow-and-sharedflow
https://developer.android.com/develop/ui/compose/navigation


Figure 11: Users can select images by long-pressing and
toggle selection by tapping. Zooming adjusts the number
of images per row. Users can download, share, or archive
the selected images in selection mode.

The streak score is recalculated once per day. If the
user exercises on that day, the score is updated accord-
ingly. Additionally, when the user opens the app, it checks
if the streak scores for previous days have been calculated.
The app will compute the missing scores if any days are
missing, ensuring the user’s progress is always up-to-date.
This feature ensures an accurate and timely reflection of
the user’s consistency without delays.

5.3 Gesture Handling in Gallery

Gestures enhance usability by allowing users to inter-
act with the gallery intuitively through tapping, swiping,
zooming, and long-pressing. These interactions eliminate
the need for extra buttons or controls, providing a seamless
browsing and selection experience.

Users can interact with images in the gallery
view through selection and zoom functionality. The
detectTapGestures within the pointerInput modifier
enables image selection: onLongPress activates selection
mode and adds the image to the selection. In contrast,
onTap either opens the image in detail or toggles its se-
lection, depending on the mode. Additionally, the zoom
functionality allowing users to adjust the number of im-
ages per row using detectPinchGestures. Zooming in
reduces the number of columns (fewer images per row),
while zooming out increases them, improving browsing

Figure 12: Thumbnails below the image enable navigation
and display image data, and a bottom bar provides options
to download, share, archive, or mark as a favorite.

efficiency. This selection and zooming interaction is illus-
trated in Figure 11.

In the ImageCarousel component, which focuses on
providing a detailed image viewing experience (Fig-
ure 12), users can toggle fullscreen mode by zooming in
or double tap on image (Figure 13). Users can swipe
left or right to navigate through images, and select a
specific image from the thumbnails below. The compo-
nent dynamically updates the displayed image, with the
onImageChange callback notifying the parent component
of any changes.

User testing indicated that the zoom and swipe features
in the image carousel allowed users to interact more intu-
itively with the images. When users swiped between im-
ages, the zoom level and position stayed consistent, which
was appreciated as it allowed users to review the technique
or posture without interruption. However, a limitation was
found in the transition animations when switching to and
from fullscreen. These animations were not as smooth as
expected, so this is an area for future improvement to en-
hance the fluidity of the user experience.

6 Conclusions and Future Works

The development of this application provided valu-
able experience in Android development, particularly in
MVVM architecture, Jetpack Compose, Kotlin, and mo-

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 13: The figure shows fullscreen mode with maxi-
mum zoom. The fullscreen mode adds a navigation bar at
the top to exit the fullscreen and a row of thumbnails at the
bottom to navigate between images.

bile databases. A key realization was the importance of
continuous user testing, which refined the user experience
and emphasized early feedback.

The app is designed to help users effortlessly track
their yoga progress. It allows logging past workouts,
adding notes, and visualizing improvements through pho-
tos. CameraX integration was implemented, contributing
to future automatic photo capture during practice. A streak
score system encourages consistency, while gesture-based
navigation ensures a seamless user experience. The appli-
cation is currently being tested on Google Play. A link13 is
available to request access to the testing program; please
contact to be added to the testing group.

Future works include Gamification and Challenges:
introducing challenges, goals, and rewards to boost en-
gagement; Neural Network Integration: implementing
AI-powered features like real-time pose detection and au-
tomatic image alignment and cropping for progress vi-
sualization; Smoother Gallery Animations: enhancing
gallery animations for a smoother browsing experience;
Beginner’s Guide: adding a simple, step-by-step guide
for easier app navigation for a new user; and Improved
Dashboard Gestures: implementing drag-and-drop ges-
tures to allow users to rearrange the widgets more easily.
The goal is to help users monitor their progress, stay mo-

13Testing program

tivated, and achieve their yoga goals through visual feed-
back.

References

[1] Nayab Akhtar and Sana Ghafoor. Analysis of archi-
tectural patterns for android development. no. June,
2021.

[2] Daily Fitness. Daily yoga ®: Yoga for fitness,
2025. https://play.google.com/store/apps/
details?id=com.dailyyoga.inc.

[3] Google. Jetpack compose ui app develop-
ment toolkit. https://developer.android.com/
compose.

[4] Google Inc. Room persistence library, 2018.
https://developer.android.com/topic/
libraries/architecture/room.

[5] Leap Fitness Group. Yoga for beginners weight
loss, 2025. https://play.google.com/store/
apps/details?id=yogaworkout.dailyyoga.go.
weightloss.loseweight.

[6] Steve Krug. Don’t Make Me Think, Revisited: A
Common Sense Approach to Web Usability (3rd Edi-
tion). New Riders, 2013. 3rd edition.

[7] Loop Habit Tracker Developers. Loop habit tracker,
2025. https://github.com/iSoron/uhabits.

[8] Travis Lowdermilk. User-centered design: a devel-
oper’s guide to building user-friendly applications.
"O’Reilly Media, Inc.", 2013.

[9] Julieta Urtubey. Montserrat font, 2011.
https://github.com/JulietaUla/Montserrat?
tab=readme-ov-file.

[10] Santosh Kumar Yadav, Amitojdeep Singh, Abhishek
Gupta, and Jagdish Lal Raheja. Real-time yoga
recognition using deep learning. Neural computing
and applications, 31:9349–9361, 2019.

[11] Zenia. Zenia app, 2025. https://www.
producthunt.com/products/zenia.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://play.google.com/apps/testing/com.yogaApp.motivationSupport
https://play.google.com/store/apps/details?id=com.dailyyoga.inc
https://play.google.com/store/apps/details?id=com.dailyyoga.inc
https://developer.android.com/compose
https://developer.android.com/compose
https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/topic/libraries/architecture/room
https://play.google.com/store/apps/details?id=yogaworkout.dailyyoga.go.weightloss.loseweight
https://play.google.com/store/apps/details?id=yogaworkout.dailyyoga.go.weightloss.loseweight
https://play.google.com/store/apps/details?id=yogaworkout.dailyyoga.go.weightloss.loseweight
https://github.com/iSoron/uhabits
https://github.com/JulietaUla/Montserrat?tab=readme-ov-file
https://github.com/JulietaUla/Montserrat?tab=readme-ov-file
https://www.producthunt.com/products/zenia
https://www.producthunt.com/products/zenia

	Introduction
	Analysis and Task Statement
	Analysis of Existing Applications
	Requirements Analysis
	Development and Testing Approach

	App Design and Visual Identity
	User Interface Details and Image Processing
	Dashboard
	Session History
	Capturing
	Progress Tracking

	Key Application Components
	Data handling and UI Integration
	Streak Score
	Gesture Handling in Gallery

	Conclusions and Future Works

