
Wide Bounding Volume Hierarchies for Ray Tracing

Lukáš Cezner*

Supervised by: Jiřı́ Bittner†

Department of Computer Graphics and Interaction
Czech Technical University in Prague

Prague / Czech Republic

Abstract

Ray tracing, as a technique for producing realistic images,
is frequently utilized for offline rendering and increasingly
in real-time rendering as well. Modern ray tracing frame-
works usually employ wide bounding volume hierarchies
(BVH), i.e. hierarchies with branching factor more than
two. This paper explores methods for constructing and
traversing these acceleration structures. We implemented
basic wide BVH construction and traversal using Vulkan
1.3 API and explored utilizing Slang versus GLSL for
implementing the traversal shader. In the five different
scenes, the evaluations demonstrated an average speedup
of 20% with 4-ary versus binary BVH. Slang sometimes
greatly outperforms (up to +23%) the GLSL implemen-
tation, while at other times it significantly underperforms
(up to -30%).

Keywords: Ray Tracing, Wide BVH, Vulkan, Slang

1 Introduction

Realistic image generation commonly employs ray trac-
ing, which requires casting a very large number of rays
(finding their intersection with the geometry of a scene).
To efficiently address this task, an acceleration structure
must be used, and the bounding volume hierarchy (BVH)
is commonly used.

Rendering of a scene consists of two steps: the con-
struction of a BVH for the scene and the traversal of this
BVH in order to find ray-primitive intersections. There are
many types of BVHs and the methods for building them
are very diverse. Notably, BVHs can be categorized into
two classes: simpler binary trees and ones with a higher
branching factor (node arity), commonly referred to as a
wide BVH. The advantage of wide BVHs is a lower tree
depth and number of nodes, resulting in lower memory
consumption and potentially in performance increase.

In this paper, we evaluate an efficient method for wide
BVH construction introduced by Benthin et al. [4] and im-
plement a simple method for traversing a BVH created in
this way. We compare the traversal of various types of

*lukas.cezner@email.cz (cezneluk@fel.cvut.cz)
†bittner@fel.cvut.cz

BVHs (binary, 4-ary, 6-ary and 8-ary BVH) implemented
in GLSL, with the 4-ary BVH additionally implemented in
the Slang shading language. We highlight possible pitfalls
while implementing such a method and present results of
measurements conducted on five testing scenes.

2 Related work

The methods and optimizations for the construction and
traversal of BVH have been extensively studied. In the
following paragraphs, we provide descriptions of several
methods that were examined for potential implementation.

2.1 Construction

The vast majority of techniques for building a wide
BVH rely on transforming an existing binary BVH, cre-
ated by algorithms such as LBVH [10], TRBVH [11] or
PLOC [19]. The wide BVH transformation typically rep-
resents a series of contractions by selecting an internal
node, removing it from the tree, and substituting it with
its child nodes. Each contraction increases the arity of a
parent node, leading to the creation of a wide BVH node.
An example of a node contraction is shown in Figure 1.

Figure 1: An example of node contraction. Upon the con-
traction of the green node, its child nodes (yellow) are
linked directly to the parent (root node), increasing the par-
ent’s arity.

Gu et al. [8] classified tree traversal tests into pass
tests, where a ray intersects a child’s bounding volume or
primitive, and prune tests, where no child is intersected.
They noted that reducing pass tests speeds up traversal
and introduced two heuristics: Surface-Area Guided Tree
Contraction (SATC), addressing structural imbalances us-
ing the standard Surface Area Heuristic (SAH) [17], and

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Ray-Distribution Guided Tree Contraction (RDTC), us-
ing statistical data from sample rays to account for ray-
distribution imbalances [8].

Ylitie et al. [24] applied dynamic programming to op-
timize the internal and leaf nodes at the same time. They
formulated the cost C(N, i) representing the total SAH cost
of the subtree at node N as a forest with up to i trees
(i ∈ [1;k − 1] for a k-ary tree). The algorithm involves
two phases: a bottom-up cost computation, and then a top-
down decision backtracing in which a wide BVH is cre-
ated.

Benthin et al. [4] describe, as part of their HPLOC (Hi-
erarchical Parallel Locally-Ordered Clustering) algorithm,
an effective top-down wide BVH conversion method that
is performed in a single kernel execution on the GPU,
which is described more in detail in Section 3.

2.2 Traversal

Traversing a wide BVH is conceptually similar to a bi-
nary BVH, but requires determining the traversal order of
its children. Ideally, the closest bounding volume should
be traversed first, which requires sorting the intersections,
e.g. using sorting networks. An example of sorting net-
works is shown in Figure 2.

As the arity of nodes increases, the computational com-
plexity increases rapidly. Therefore, Ylitie et al. [24] ex-
tended the traversal order introduced by Garanzha and
Loop [7], where the traversal order is defined by the XOR
operation (i⊕ r) between a child’s index i and a ray’s oc-
tant r encoded as a binary number [24].

Ogaki and Derouet-Jourdan [21] introduced a technique
to determine the traversal order in occlusion (any-hit) tests
using ray sample statistics, sorting children in the con-
struction phase by the likelihood that primitives in their
subtree intersect a ray.

(a) (b)

(c)

Figure 2: Optimal sorting network for various number of
elements: (a) 4 elements and 5 comparisons, (b) 6 ele-
ments and 12 comparisons, (c) 8 elements and 19 compar-
isons [12].

3 Constructing wide BVH

For conversion from a binary BVH to a wide BVH, we
chose the HPLOC single-kernel execution method [4].
This technique employs a pair of indices per shader in-
vocation, stored in global memory: the first index denotes
the binary BVH node to be processed by the invocation,
while the second index points to the memory where the
computed wide BVH node will be stored.

The indices are initialized to an invalid value, denoting
that an invocation has not yet received a BVH node to pro-
cess. Only the first invocation contains the indices of a root
node. Each invocation atomically checks its index pair un-
til it contains valid values. Subsequently, it accesses the
binary BVH node at the given index and selects up to k
children for the wide k-ary BVH node in the subtree, con-
tracting nodes with the largest surface area. After that,
these k children are set to be processed; one child is pro-
cessed by the same invocation, while the remaining k− 1
are assigned to other invocations by atomically writing to
not-yet-valid index pairs. This process continues until an
invocation process a leaf node. Figure 3 shows this method
applied to a small tree.

The selected traversal order for a wide BVH employs
a sorting network, sized to match the tree’s arity, as illus-
trated in Figure 2.

4 Implementation

The wide BVHs are implemented within the path-
tracing framework named Orchard, developed by Martin
Káčerik [13]. All manipulation with BVH trees, from con-
struction to traversal, is performed on a GPU using Vulkan
1.3 compute shaders. The majority of these shaders were
implemented using GLSL, with only the wide BVH traver-
sal shader being developed both in GLSL and in Slang.
Initially, a binary BVH is built using the PLOC++ algo-
rithm [3], followed by the collapse step, which, based on
the SAH cost, merges some of the leaves to increase the
number of primitives per leaf. The binary BVH is later
contracted into a wide BVH during the arity conversion
phase via the HPLOC conversion algorithm, and lastly, the
BVH is arranged for traversal during the compression step.

Path tracing utilizes a wavefront approach [14] and con-
sists of three stages: the generation of primary rays, the
BVH traversal that finds the nearest hit for all rays, and
shade + cast, where intersections are resolved and sec-
ondary rays for subsequent traversal iterations are created.
Between each of these stages, the GPU device synchro-
nization is inserted. Originally, the entire path tracing
utilized a single kernel execution managed by a software
scheduler. However, due to the issues outlined in Sec-
tion 5.1, the approach with each stage as an individual
(separated) kernel execution was selected (the following
text refers to this separated kernels BVH traversal, unless
stated otherwise).

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



The BVH traversal itself is done via speculative while-
while traversal with persistent threads [1], where new rays
are fetched if the number of active invocations in the sub-
group (32 threads) is less than 20. At present, the frame-
work supports only first-hit traversal utilizing a diffuse re-
flectance model, with a maximum of eight reflections.

4.1 Shading languages

For the development of wide BVH kernels, we consider
two shading languages: GLSL and Slang.

GLSL is the primary shading language for OpenGL
and is frequently utilized to write shaders for Vulkan as
well. Provides fundamental programming constructs such
as control statements, loops, functions, and structures, but
does not provide any advanced features (such as interfaces
that could be used to easily represent different kinds of
BVH nodes) [15]. Consequently, creating several variants
of a shader requires the use of preprocessor macros, which
decrease readability.

Slang shading language is a modern shading language
designed to support compatibility with multiple back-ends
while simultaneously providing functionalities to target a
particular back-end. It is based on HLSL, commonly used
in development with the DirectX API, and extends it by
several modern programming features, including member
functions and properties, operator overloads, interfaces,
and generics, and employs a modular compilation method
allowing more maintainable development of shader vari-
ants [22]. In general, Slang is a rapidly evolving and
promising language, but certain features are not yet fully
mature, thus it might not yet be fit for use in production
environment.

4.2 Wide BVH traversal

We implement the traversal shader twice: once using
GLSL and again utilizing Slang. Traversing of the wide
BVH is done entirely in one shader kernel utilizing soft-
ware scheduling and GPU device synchronization. In con-
trast, binary BVH utilizes separate kernels for traversal
and ray generation for every depth (see Section 5.1).

The Slang and GLSL variants share the same BVH tree
created by the GLSL construction shader. The bounding
volumes of the children are stored in the parent node and
intersected within the loop. Instead of loading the en-
tire BVH node to the GPU registers at once, each bound-
ing volume is prefetched during the prior loop iteration
to mitigate memory latency without excessive use of reg-
isters, thus preventing reduced working subgroup occu-
pancy. Subsequently, a sorting network orders the inter-
sected BVH nodes by distance.

The Slang version of wide BVH traversal uses a traver-
sal stack with 96 entries, compared to 64 in GLSL, as GPU
drivers often store the entire stack in registers, which de-
grade performance due to small GPU occupancy. Table 1
presents the usage of the register, global, and shared mem-
ory for all shader variants, including those excluded from
the measurement.

5 Results and Discussion

We evaluate the implementation’s performance across the
five scenes: Lumberyard Bistro [2] (interior and exterior),
San Miguel 2.0 [18], Red Autumn Forest [23] and Lynxs-
design’s interior room [16]. Each scene was rendered from
8 different views, with 15 path samples for each pixel in

(a) Original binary BVH tree, red highlighting represents chil-
dren of wide BVH nodes.

(b) Content of pairs array, specifically indices of binary BVH
nodes that is scheduled to be processed.

Figure 3: Example of conversion of a binary BVH tree to a 4-ary wide BVH tree with the HPLOC algorithm [4]. Starting
from the binary BVH root, the first invocation determines the children for the wide BVH root. It schedules itself to process
the first child (internal node 0), while the remaining children (internal nodes 1, 5, and 4) are assigned to different shader
invocations. The image was taken from Benthin et al. [4]

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



every view. Figure 4 presents the selected view for each of
these scenes. The resulting MRps (Mega rays per second)
performance is an average taken from all path samples and
views within the scene.

M
et

ho
d

R
eg

is
te

rc
ou

nt

L
oc

al
m

em
or

y
si

ze
(b

yt
es

)

Sh
ar

ed
m

em
or

y
si

ze
(b

yt
es

)

Binary (single) 48 256 3344
Binary (separated) 40 256 0
Wide4 (single) 48 256 3344
Wide4 (separated) 48 256 0
Wide4 (32×24, sep.) 40 256 21504
Wide4 Slang (single) 156 0 4
Wide4 Slang (separated) 52 384 0
Wide6 (single) 64 256 4
Wide6 (separated) 52 256 0
Wide8 (single) 64 256 4
Wide8 (separated) 56 256 0

Table 1: Comparison of shader usage of registers, lo-
cal and shared memory, gathered via Pipeline Executable
Properties [6] extension. Anticipated memory consump-
tion consists of 256 bytes (384 for the Slang variant) for
the traversal stack in local memory and 4 bytes in shared
memory in single-kernel mode. When register usage ex-
ceeds 40, the occupancy of compute units (SM) decreases.
The workgroup size is 32×2 unless otherwise stated. The
selected benchmark candidates appear in bold (they have
no memory problems).

We conducted the measurements on a Linux 6.13.6 PC
featuring an NVIDIA GeForce RTX 4070 Ti GPU (driver
nvidia-open 570.124.04), keeping the GPU clock speed
locked at 2835 MHz and the VRAM clock speed at 10501
MHz to ensure consistent results. Shaders were compiled
using glslang 15.1.0 and Slang 2025.6.3. The shader ex-
ecution time was measured as the difference between the
start of the first invocation and the end of the last invoca-
tion, using the Shader Clock [9] extension.

Figure 5 illustrates the performance of primary and sec-
ondary rays across chosen methods. Table 5 presents the
same results, along with tree construction time, scene and
BVH tree statistics, in a table format. The construction
of the BVH takes a similar time, where the arity conver-
sion stage took approximately 6% of total time. An in-
crease in the ct parameter for 6 and 8-ary BVH results in
a faster construction, as fewer BVH nodes are passed to
subsequent stages (due to the larger leaf nodes).

Generally, 4-ary wide BVH performs better than other
approaches (on average about 20%, and sometimes by up
to 37% or even 47% in the Slang variant) for both primary
and secondary rays, except in the san miguel scene, where
6-ary BVH is superior for primary rays. In four out of
five scenes, the secondary rays with 6-ary BVH yield sim-
ilar results to 4-ary BVH, though it is slower for primary
rays (but in different scenes). 8-ary BVHs exhibit inferior
performance compared to the binary variant, likely due to
the significant memory requirements (232 bytes per node)
and the relatively low average of children per node, with
many lower-level nodes near the leaves being only par-
tially filled.

In three scenes, the Slang variant surpasses (up to
+23%) the GLSL implementation for secondary rays, al-
though it is poorly ranked in other cases (up to -30%),
specifically in all primary rays and bistro int’s secondary

(a) (b) (c)

(d) (e)

Figure 4: Rendering of data set scenes by a 4-ary BVH: (a) San Miguel 2.0 [18], (b) Lumberyard Bistro interior [2], (c)
Lumberyard Bistro exterior [2], (d) Lynxsdesign’s interior room [16] and (e) Red Autumn Forest [23].

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



bi
st

ro
in

t

bi
st

ro
ex

t

ly
nx

sd
es

ig
n

sa
n

m
ig

ue
l

re
d

au
tu

m
n

fo
re

st
0.6

0.8

1

1.2

1.4

1.6
R

el
at

iv
e

M
R

ps
pe

rf
or

m
an

ce
(h

ig
he

ri
s

be
tte

r)

Primary rays

Binary
Wide4

Wide4 Slang
Wide6
Wide8

bi
st

ro
in

t

bi
st

ro
ex

t

ly
nx

sd
es

ig
n

sa
n

m
ig

ue
l

re
d

au
tu

m
n

fo
re

st

0.6

0.8

1

1.2

1.4

1.6

R
el

at
iv

e
M

R
ps

pe
rf

or
m

an
ce

(h
ig

he
ri

s
be

tte
r)

Secondary rays

Figure 5: The relative MRps performance (the ratio of MRps in comparison to the Binary variant) of primary and sec-
ondary rays for wide BVH variants.

rays. We do not know exactly the reason for this behavior,
but it can be due to Slang optimization, which moves some
SPIR-V instructions before a condition [5]. Although a fix
for this bug exists, it was not tested because of a limited
time prior to submission of this paper.

The traversal shaders were executed using a workgroup
size of 32×2, respectively 32×32 for 6-ary BVH. The rel-
ative performance of the MRps of varying workgroup sizes
is shown in Table 3. Due to significant scene variations un-
der certain conditions, the optimal workgroup size was de-
termined by the greatest minimum value across scenes. As
shader invocations do not communicate with other threads,
the impact of workgroup configuration is minor (as ex-
pected) when the GPU is adequately saturated, which usu-
ally occurs when more than two workgroups can occupy
the compute unit (< 32 × 24). Only 6-ary BVH bene-
fit from the situation where only one workgroup can fit,

ci = 2,ct = 1 2 3 4 5 6
Binary 0.99 1.00 0.99 0.99 0.99 0.97
Wide4 1.00 1.00 1.00 0.99 0.97 0.96
Wide4
Slang

0.99 1.00 0.99 0.98 0.96 0.94

Wide6 0.98 1.00 1.00 1.00 0.99 0.98
Wide8 0.97 0.99 0.99 1.00 1.00 0.99

Table 2: Average relative MRps of the scenes using vary-
ing ct parameters for leaf node compaction. The best
MRps for each shader variant is highlighted in bold.

probably due to some smaller GPU occupancy and cache
accesses.

Although the change in the SAH traversal cost parame-
ter ct during the leaf collapse phase of the BVH construc-
tion is subtle, there is a noticeable trend: as the BVH ar-
ity increases, the optimal ct also grows, resulting in more
primitives per leaf. As indicated in Table 2, the best ct is
2 for binary and 4-ary BVH, 3 for 6-ary BVH, and 4 for
8-ary, with ci consistently set to 2.

5.1 Instabilities of the BVH traversal

One of the primary challenges faced in development is the
instability of the single-kernel path tracer, which showed
an unexpected performance fluctuation. Primarily in the
Binary variant, fluctuation was in the range up to 100%
– within the same execution of the program, performance
varies every few seconds, which absolutely invalidates per-
formance measurements. Our investigation suggests that
this behavior probably arises from heuristic shader opti-
mizations by the graphics driver, which seeks to reduce
active registers by using temporary storage. In particular,
the shader uses an extensive amount of shared memory (as
much as 50 kB for a workgroup of size 32× 24), despite
only 4 bytes being explicitly needed. Furthermore, the
high usage of shared memory limits the number of con-
current workgroups in a compute unit.

Strange profiling behavior in the NVIDIA Nsight
Graphics [20] debugger further complicates troubleshoot-
ing. The first profile captured during path tracing produces

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



different results compared with subsequent ones. Figure
6 illustrates a comparison of profiles for the same shader
during an identical session.

Figure 6: Comparison of two profile captures of the iden-
tical Binary single-kernel traversal shader during the same
session using the NVIDIA Nsight Graphics [20] debug-
ger. The first profile indicates full SM (compute unit) oc-
cupancy, while the second one displays occupancy limited
to half the maximum, implying that the graphics driver re-
compiled the shader at runtime.

Primary rays Secondary rays
Binary 1.04 1.36
Wide4 1.16 1.67

Wide4 Slang 1.97 2.48
Wide6 1.00 1.00
Wide8 0.94 0.94

Table 4: The relative MRps (average across scenes) when
comparing the separated kernel against the single kernel
traversal shader with the same BVH arity (values > 1 in-
dicate that the separated kernel is faster, individual rows
are independent of each other).

BVH traversal using separated kernels does not show
these performance fluctuations. However, as indicated in
Table 3 (values highlighted in red) and Table 1, certain
workgroup sizes still require unusually large shared mem-
ory, resulting in a significant speed reduction.

Table 4 presents a comparison of MRps performance
between separate and single kernel variants. This compar-
ison may not be entirely accurate due to the instabilities
mentioned above, but it demonstrates a correlation with
abnormal register/memory usage. Binary and both Wide4
variants exhibit a significant performance increase (which
have these registry and memory issues as shown in Table
1), while Wide6 and Wide8 demonstrate identical or even
reduced MRps in the separated variants.

6 Conclusion and Future work

The conducted measurements confirm that wide BVH
variants speed up raytracing compared to binary BVHs,
aligning with current industry trends. More advanced
methods of the wide BVH are expected to further enhance
performance. Upon resolving the implementation chal-
lenges with the Slang variant of shaders, it appears that
Slang can surpass commonly utilized GLSL.

Our top priority is to resolve the existing issue with slow
performance of the Slang implementation in some cases.
Subsequently, we should compare existing methods with
more advanced techniques such as view-dependent con-
struction heuristics and BVH tree compression.

Acknowledgments

This work was supported by the Grant Agency
of the Czech Technical University in Prague, No
SGS25/150/OHK3/3T/13.

32×2 32×4 32×8 32×12 32×16 32×20 32×24 32×28 32×32

Binary
min 1.00 1.00 0.99 0.98 0.97 0.95 0.96 0.96 0.98
avg 1.00 1.00 1.00 0.99 0.98 0.97 0.97 1.01 0.99

Wide4
min 1.00 1.00 0.99 0.99 0.97 0.98 0.74 0.91 0.97
avg 1.00 1.00 1.00 1.01 1.02 0.99 0.81 1.02 1.01

Wide4 Slang
min 1.00 0.99 0.96 0.99 0.95 0.95 0.74 0.93 0.96
avg 1.00 1.00 0.98 1.00 0.98 1.00 0.76 0.95 0.98

Wide6
min 0.92 0.93 0.92 0.93 0.78 0.92 0.77 0.95 1.00
avg 0.94 0.94 0.94 0.94 0.86 0.94 0.86 1.01 1.00

Wide8
min 1.00 1.00 0.98 1.00 0.97 0.83 0.86 0.93 0.97
avg 1.00 1.00 1.00 1.00 1.00 0.89 0.98 0.99 1.00

Table 3: Relative MRps performance with different workgroup sizes. The best workgroup size for each variant (based on
the minimum value) is selected as the reference number and is shown in bold black text. Sizes where the relative MRps
are below 0.9 (which corresponds with usage of an unexpectedly large amount of shared memory) are shown in bold red
text. The ”min” and ”avg” rows denote the minimum and average of relative MRps across the tested scenes.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Sc
en

e

M
et

ho
d

B
ui

ld
tim

e
(m

s)

A
vg

.c
hi

ld
re

n
pe

rn
od

e

A
vg

.p
ri

m
iti

ve
s

pe
rl

ea
f

Pr
im

ar
y

ra
ys

(M
R

ps
)

Se
co

nd
ar

y
ra

ys
(M

R
ps

)

bistro int
(1.04 Mtris)

Binary 13.3 (1.00) 2.0 1600 (1.00) 214 (1.00)
Wide4 13.1 (0.98) 3.1 2.1 1770 (1.11) 238 (1.11)
Wide4 Slang 13.0 (0.98) 3.1 1276 (0.80) 166 (0.77)
Wide6 12.4 (0.93) 3.7 2.5 1529 (0.96) 227 (1.06)
Wide8 12.2 (0.92) 4.3 3.3 1432 (0.89) 191 (0.89)

bistro ext
(2.83 Mtris)

Binary 22.0 (1.00) 2.0 892 (1.00) 126 (1.00)
Wide4 22.4 (1.02) 3.1 2.1 1054 (1.18) 145 (1.16)
Wide4 Slang 22.4 (1.02) 3.1 746 (0.84) 172 (1.37)
Wide6 22.0 (1.00) 3.8 2.6 922 (1.03) 149 (1.19)
Wide8 21.0 (0.95) 4.4 3.3 855 (0.96) 121 (0.96)

lynxsdesign
(8.20 Mtris)

Binary 43.6 (1.00) 2.0 2262 (1.00) 758 (1.00)
Wide4 47.1 (1.08) 3.0 2.0 2414 (1.07) 1045 (1.38)
Wide4 Slang 47.0 (1.08) 3.0 1974 (0.87) 844 (1.11)
Wide6 46.3 (1.06) 3.6 2.2 2178 (0.96) 884 (1.17)
Wide8 44.2 (1.01) 4.1 2.7 1921 (0.85) 787 (1.04)

san miguel
(9.96 Mtris)

Binary 58.8 (1.00) 2.0 756 (1.00) 169 (1.00)
Wide4 62.5 (1.06) 3.1 2.1 928 (1.23) 202 (1.19)
Wide4 Slang 62.4 (1.06) 3.1 695 (0.92) 250 (1.48)
Wide6 59.6 (1.01) 3.7 2.7 999 (1.32) 204 (1.21)
Wide8 58.1 (0.99) 4.3 3.4 919 (1.22) 163 (0.97)

red autumn forest
(14.46 Mtris)

Binary 77.4 (1.00) 2.0 675 (1.00) 165 (1.00)
Wide4 82.3 (1.06) 3.1 2.4 861 (1.28) 206 (1.25)
Wide4 Slang 82.2 (1.06) 3.1 683 (1.01) 241 (1.46)
Wide6 80.2 (1.04) 3.9 2.8 770 (1.14) 199 (1.21)
Wide8 78.3 (1.01) 4.4 3.3 648 (0.96) 157 (0.95)

Table 5: Results and statistics for benchmarked methods across five distinct scenes. The numbers in parentheses are
relative values compared to the Binary variant. The best results in the category are highlighted by bold text.

References

[1] Timo Aila and Samuli Laine. Understanding the effi-
ciency of ray traversal on GPUs. Proceedings of the
Conference on High Performance Graphics 2009,
August 2009.

[2] Amazon Lumberyard. Amazon Lumberyard Bistro,
Open Research Content Archive (ORCA). http://

developer.nvidia.com/orca/amazon-lumberyar

d-bistro, 7 2017. Accessed: 2025-03-05.

[3] Carsten Benthin, Radoslaw Drabinski, Lorenzo Tes-
sari, and Addis Dittebrandt. PLOC++: Parallel

Locally-Ordered Clustering for Bounding Volume
Hierarchy Construction Revisited. Proc. ACM Com-
put. Graph. Interact. Tech., 5(3), July 2022.

[4] Carsten Benthin, Daniel Meister, Joshua Bar-
czak, Rohan Mehalwal, John Tsakok, and Andrew
Kensler. H-PLOC: Hierarchical Parallel Locally-
Ordered Clustering for Bounding Volume Hierarchy
construction. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 7(3):1–14, Au-
gust 2024.

[5] Lukáš Cezner. ForceInline moves instructions before
a condition · Issue #6654 · shader-slang/slang. http

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://github.com/shader-slang/slang/issues/6654


s://github.com/shader-slang/slang/issues/66

54. Accessed: 2025-04-05.

[6] Faith Ekstrand, Ian Romanick, Kenneth Graunke,
Baldur Karlsson, Jesse Hall, Jeff Bolz, Piers
Daniel, Tobias Hector, Jan-Harald Fredriksen,
Tom Olson, Daniel Koch, and Spencer Fricke.
VK KHR pipeline executable properties(3) Manual
Page. https://registry.khronos.org/vulkan/sp

ecs/latest/man/html/VK_KHR_pipeline_execut

able_properties.html, 5 2019. Accessed: 2025-
03-31.

[7] Kirill Garanzha and Charles Loop. Fast Ray Sort-
ing and Breadth-First Packet Traversal for GPU Ray
Tracing. Computer Graphics Forum, 29(2):289–298,
2010.

[8] Yan Gu, Yong He, and Guy E. Blelloch. Ray Special-
ized Contraction on Bounding Volume Hierarchies.
Computer Graphics Forum, 34(7):309–318, 2015.

[9] Aaron Hagan and Daniel Koch.
VK KHR shader clock(3) Manual Page.
https://registry.khronos.org/vulkan/specs/

latest/man/html/VK_KHR_shader_clock.html, 4
2019. Accessed: 2025-03-31.

[10] Tero Karras. Maximizing parallelism in the construc-
tion of BVHs, octrees, and k-d trees. High Perfor-
mance Graphics, page 33–37, 6 2012.

[11] Tero Karras and Timo Aila. Fast parallel construc-
tion of high-quality bounding volume hierarchies. In
Proceedings of the 5th High-Performance Graphics
Conference, HPG ’13, page 89–99, New York, NY,
USA, 2013. Association for Computing Machinery.

[12] Donald E. Knuth. The Art of Computer Program-
ming, Volume 3: (2nd ed.) Sorting and Search-
ing. Addison Wesley Longman Publishing Co., Inc.,
USA, 1998.

[13] Martin Káčetik and Jiřı́ Bittner. SAH-Optimized k-
DOP Hierarchies for Ray Tracing. Proc. ACM Com-
put. Graph. Interact. Tech., 7(3), August 2024.

[14] Samuli Laine, Tero Karras, and Timo Aila. Megak-
ernels considered harmful: wavefront path tracing on
gpus. In Proceedings of the 5th High-Performance
Graphics Conference, HPG ’13, page 137–143, New
York, NY, USA, 2013. Association for Computing
Machinery.

[15] Graeme Leese, John Kessenich, Dave Baldwin, and
Randi Rost. The OpenGL® Shading Language, Ver-
sion 4.60.8. https://registry.khronos.org/O

penGL/specs/gl/GLSLangSpec.4.60.pdf, 8 2023.
Accessed: 2025-03-05.

[16] Lynxsdesign. Blender 4.1 Splash Screen – Lynxs-
design. https://www.blender.org/download/d

emo/splash/blender-4.1-splash.blend, 3 2024.
Accessed: 2025-03-05.

[17] David J. MacDonald and Kellogg S. Booth. Heuris-
tics for ray tracing using space subdivision. Vis.
Comput., 6(3):153–166, 5 1990.

[18] Morgan McGuire. Computer Graphics Archive. http
s://casual-effects.com/data, 7 2017. Accessed:
2025-03-05.

[19] Daniel Meister and Jiřı́ Bittner. Parallel Locally-
Ordered Clustering for Bounding Volume Hierarchy
Construction. IEEE Transactions on Visualization
and Computer Graphics, 24(3):1345–1353, 2018.

[20] NVIDIA Corporation. NVIDIA Nsight Graphics. ht
tps://developer.nvidia.com/nsight-graphics,
2018–2024. Accessed: 2025-03-05.

[21] Shinji Ogaki and Alexandre Derouet-Jourdan. An
N-ary BVH Child Node Sorting Technique for Oc-
clusion Tests. Journal of Computer Graphics Tech-
niques (JCGT), 5(2):22–37, June 2016.

[22] Slang contributors. Slang User’s Guide. https://sh
ader-slang.org/slang/user-guide/. Accessed:
2025-03-05.

[23] Robin Tran. Blender 2.91 Splash Screen – Red Au-
tumn Forest. https://cloud.blender.org/p/ga

llery/5fbd186ec57d586577c57417, 11 2020. Ac-
cessed: 2025-03-05.

[24] Henri Ylitie, Tero Karras, and Samuli Laine. Effi-
cient incoherent ray traversal on GPUs through com-
pressed wide BVHs. In Proceedings of High Per-
formance Graphics, HPG ’17, New York, NY, USA,
2017. Association for Computing Machinery.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://github.com/shader-slang/slang/issues/6654
https://github.com/shader-slang/slang/issues/6654
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_KHR_pipeline_executable_properties.html
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_KHR_pipeline_executable_properties.html
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_KHR_pipeline_executable_properties.html
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_KHR_shader_clock.html
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_KHR_shader_clock.html
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.blender.org/download/demo/splash/blender-4.1-splash.blend
https://www.blender.org/download/demo/splash/blender-4.1-splash.blend
https://casual-effects.com/data
https://casual-effects.com/data
https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nsight-graphics
https://shader-slang.org/slang/user-guide/
https://shader-slang.org/slang/user-guide/
https://cloud.blender.org/p/gallery/5fbd186ec57d586577c57417
https://cloud.blender.org/p/gallery/5fbd186ec57d586577c57417

	Introduction
	Related work
	Construction
	Traversal

	Constructing wide BVH
	Implementation
	Shading languages
	Wide BVH traversal

	Results and Discussion
	Instabilities of the BVH traversal

	Conclusion and Future work

