
Editing and Visualization of Large
Point Clouds for Urban Planning Applications

Gorazd Gorup*

Supervised by: Ciril Bohak†, and Žiga Lesar‡

Faculty of Computer and Information Science
University of Ljubljana

Ljubljana / Slovenia

Abstract

Urban planning has become increasingly complex in re-
cent years, necessitating more detailed and accurate repre-
sentations of real-world environments to meet design ob-
jectives. While mesh and parametric geometry are dom-
inant in current workflows, they often fail to capture es-
sential contextual information. In contrast, point clouds
have untapped potential for improving urban design pro-
cesses. This paper addresses the challenge of interactively
visualizing and editing large point cloud datasets from
LiDAR scans, proposing methods that we implemented
as a set of tools and utilities to enhance urban planning
workflows. We extended the open-source 3D modelling
software Blender with features for loading and visualiz-
ing large point clouds, and implementing levels-of-detail
and classification mechanisms. We do so by adapting
Blender’s internal representations and functions to accom-
modate point geometry. We created tools for targeted edit-
ing operations and leverage Blender’s Geometry Nodes
to facilitate non-destructive, node-based editing for opera-
tions such as point copying, painting, and flattening – basic
tasks in urban design. We tested the rendering function-
ality of Blender’s rendering engines to visualize different
point attributes, such as colour, elevation, and classifica-
tion. Finally, we evaluated our solution against Rhinoceros
8 and its Grasshopper extension, commonly used in urban
planning, and identified areas where Blender’s point cloud
manipulation and visualization capabilities could be im-
proved.

Keywords: Blender, Computer Graphics, Editing, Ge-
ometry Nodes, Point Cloud, Rendering, Urban Planning,
Visualization

1 Introduction

The increasing availability of high-resolution point cloud
datasets has greatly enhanced urban planning, offering de-

*gorazd@lgm.fri.uni-lj.si
†ciril.bohak@fri.uni-lj.si
‡ziga.lesar@fri.uni-lj.si

tailed spatial data for analysis and manipulation. Ad-
vances in light detection and ranging (LiDAR) and pho-
togrammetry have enabled the creation of large-scale
datasets, many of which are publicly accessible, for ex-
ample Toronto-3D [10] for autonomous driving and ur-
ban mapping, Paris-Lille-3D [8], which was acquired to
develop automatic segmentation of urban infrastructure,
and SemanticKITTI [1] and TUM-MLS-2016 [19] for ur-
ban environment modelling. National airborne LiDAR
datasets, such as those from Slovenia [2, 6] and the Nether-
lands [12], provide extensive coverage, although at a lower
resolution and with a limited field of view.

These datasets support machine learning applications
and enhance urban planning workflows, promoting data-
driven decision-making [4, 3, 15]. With a growing de-
mand for detailed urban modelling, there is an increasing
need for advanced visualization and editing tools. Exist-
ing point cloud tools primarily offer basic operations like
cropping, trimming, and basic spacial transformations.
However, they lack direct editing features similar to those
in common 3D modelling software, which support vari-
ous geometry types (e.g., polygon meshes, Bézier curves,
NURBS surfaces, metaballs, and constructive solid geom-
etry). Consequently, users often convert point clouds to
other formats for editing, leading to errors and data loss.

To address this, we propose a non-destructive point
cloud editing approach within Blender, an open-source 3D
modelling application. We present an efficient handling of
large point cloud data via level-of-detail (LoD) functional-
ity, a non-destructive editing approach through Blender’s
Geometry Nodes, and advanced rendering of point clouds
utilizing attributes like colour, position, and classification.

In Section 2, we review prior work and existing tools, in
Section 3, we detail our approach, in Section 4, we evalu-
ate results of our approach and comparisons with a popular
Computer Aided Design (CAD) application Rhinoceros,
and in Section 5, we present findings, limitations, and fu-
ture research aims.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



2 Background

The convergence of procedural modelling, point cloud
technologies, and urban planning has significantly ad-
vanced urban design and visualization. Recent studies em-
phasize the integration of artistic and technical approaches
to enhance planning workflows. Yang [16] presents a
model for transforming 2D sketches into 3D CAD rep-
resentations, streamlining design for architects. Ihle and
Wichmann [5] explore the fusion of scientific data and
artistic representation to deepen landscape visualization.
Additionally, Urech et al. [11] highlight point clouds as a
crucial link between design and planning, facilitating ac-
curate urban modelling.

2.1 Procedural Methods in Urban Modelling

Procedural modelling addresses the inefficiencies of tra-
ditional urban design methods. Yang and Delparte [17]
demonstrate a framework using CityEngine1 to generate
3D models from Geographic Information System (GIS)
datasets, while Mustafà et al. [7] integrate environmen-
tal factors, such as flood sensitivity, into procedural work-
flows. Open-source tools, including Ladybug2 and Drag-
onfly3, further promote sustainable urban design.

2.2 Point Cloud Modelling in Urban Planning

Advancements in LiDAR and mobile laser scanning have
expanded point cloud applications. Wang et al. [14] pro-
vide an overview of mobile scanning for high-resolution
urban modelling, while You et al. [18] focus on airborne
laser scanning for green space management. Schmohl et
al. [9] integrate Artificial Intelligence (AI) with point
cloud data for improved urban forestry planning. Vijay-
wargiya and Ramiya [13] highlight point clouds’ role in
sustainable governance, supporting applications such as
energy management and infrastructure monitoring.

2.3 Existing Point Cloud Processing Tools

Several software solutions support point cloud visualiza-
tion and editing to varying degrees.

Rhinoceros 3D and Grasshopper. Rhinoceros4 is a
CAD software widely used in architecture and engineer-
ing. Its extension Grasshopper5 provides a node-based
approach for geometry manipulation. For point clouds,
the Volvox6 extension is widely used, and supports basic
point selection, deletion, and merging. With Rhinoceros

1https://www.esri.com/en-us/arcgis/products/
arcgis-cityengine

2https://github.com/ladybug-tools/
ladybug-blender

3https://www.ladybug.tools/dragonfly.html
4rhino3d.com/
5https://www.grasshopper3d.com
6https://www.grasshopper3d.com/group/volvox

8, native point cloud support improves workflow integra-
tion, though processing with Grasshopper remains com-
putationally intensive due to data being copied with every
node operation.

Autodesk Solutions. Autodesk offers Revit7, Auto-
CAD8, and ReCap PRO9. ReCap PRO focuses on 3D
scanning, but primarily supports visualization rather than
direct editing. Most Autodesk tools treat point clouds as
static references rather than editable datasets.

Other Tools. Several other solutions provide varying
levels of point cloud functionality:

• Pix4D10 specializes in photogrammetry-based point
cloud processing, offering noise removal and classi-
fication features.

• ESRI ArcGIS11 supports geospatial analysis but
lacks direct editing capabilities, focusing instead on
classification and visualization.

• DJI Modify12 integrates with drone-based mapping,
enabling noise removal and point flattening.

• Tcp Point Cloud Editor13 offers classification, slic-
ing, and simultaneous localization and mapping
(SLAM) visualization.

• Vega14 extends AutoCAD with contour generation
and texture projection.

• 3D Survey15 includes selection, transformation, and
X-Ray visualization for urban scanning.

• CloudCompare16 is an open-source tool that sup-
ports segmentation, classification, and format conver-
sion.

Despite all advancements and dedicated software, ex-
isting tools have limitations. Many procedural modelling
software, such as CityEngine, lack direct point cloud edit-
ing capabilities, necessitating conversion to alternative ge-
ometries, which introduces errors and reduces traceabil-
ity. While proprietary solutions offer powerful tools,
they are rigid and costly, and prioritize visualization over
direct editing, whereas open-source alternatives remain
fragmented. To address these gaps, we propose a non-
destructive point cloud editing approach using Blender’s

7https://www.autodesk.com/products/revit
8https://www.autodesk.com/products/autocad
9https://www.autodesk.com/products/recap

10https://www.pix4d.com
11https://www.arcgis.com/
12https://enterprise.dji.com/modify
13https://www.aplitop.com/products/

tcp-pointcloud-editor
14https://www.vegaapp.co.il
15https://3dsurvey.si
16https://cloudcompare.org

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://www.esri.com/en-us/arcgis/products/arcgis-cityengine
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine
https://github.com/ladybug-tools/ladybug-blender
https://github.com/ladybug-tools/ladybug-blender
https://www.ladybug.tools/dragonfly.html
rhino3d.com/
https://www.grasshopper3d.com
https://www.grasshopper3d.com/group/volvox
https://www.autodesk.com/products/revit
https://www.autodesk.com/products/autocad
https://www.autodesk.com/products/recap
https://www.pix4d.com
https://www.arcgis.com/
https://enterprise.dji.com/modify
https://www.aplitop.com/products/tcp-pointcloud-editor
https://www.aplitop.com/products/tcp-pointcloud-editor
https://www.vegaapp.co.il
https://3dsurvey.si
https://cloudcompare.org


Import
Preprocessing

Render

Export

Editing Rendering

LAS to PLY Normals LoD Geometry Nodes Grease Pencil Shader Editor Renderer

Point Cloud Files Final Image

Render

Figure 1: The diagram illustrates our workflow for point cloud manipulation in Blender.

procedural capabilities. Our method enables interactive
manipulation, enhanced rendering, and improved work-
flow integration, bridging procedural urban modelling and
detailed point cloud transformations.

3 Methods

We implemented an extension for Blender to import the
LAS point cloud files and to provide some pre-made Ge-
ometry Nodes constructions for operations mentioned be-
low. Python was used to tie logic to the Blender UI, for
some simple computations, and for instantiating Geome-
try Node templates and helper objects. For more expen-
sive operations (reading from LAS files, normal calcula-
tion, ...) Rust was used and attached to the Python code as
a module.

Our workflow for point cloud manipulation consists of
three main stages: (1) preprocessing and import, (2) ma-
nipulation via node trees, and (3) rendering of the resulting
geometry, as seen in Figure 1. Initially, we preprocess the
point cloud by converting the LAS file to PLY format 17,
considering LoD and classification. Normals can be op-
tionally calculated, though this step may be deferred to the
editing stage based on user preference. During the editing
phase, Geometry Nodes and Grease Pencil are the primary
tools for transforming the point cloud. After editing, the
modified point clouds are either exported or proceed to the
rendering stage, where materials are applied to the points
in the Shader Editor, and rendering settings are adjusted
for either the Cycles or EEVEE engine, which are the de-
fault rendering engines in Blender.

3.1 Preprocessing

Blender and Rhinoceros offer limited native support for
point cloud data. Both can handle PLY files, while
Rhinoceros supports additional formats like ASTM E57.

17PLY is a file format for 3D data storage, which can contain different
entities – vertices, edges, faces, etc. – and any number of attributes they
may have.

Since LiDAR point clouds are often stored in LAS format,
we used CloudCompare to convert LAS files to ASTM
E57 for Rhinoceros. For Blender, we implemented our
custom LAS importer, with which we also recentred the
point cloud to mitigate precision issues.

Blender organizes data into objects, with point clouds
represented as unconnected vertices that require conver-
sion into renderable instances via Geometry Nodes.

3.1.1 LoD and Classifications

Blender imposes an approximately 4.2 GB point buffer
limit per object. At the same time, due to the huge amount
of data, we needed LoD to optimize rendering and interac-
tion. To satisfy both restrictions, we implemented LoD as
separate objects containing subsets of points.

LiDAR datasets classify points into 256 categories, such
as ground, buildings, and vegetation. We explored two
approaches for toggling classification visibility:

1. Storing classified points in separate objects for effi-
cient visibility toggling.

2. Storing class IDs as point attributes and filtering via
Geometry Nodes.

While the first approach improved performance, we
adopted the second due to better integration with Geom-
etry Nodes: we would have to apply the Geometry Nodes
modifier on a limited set of objects built from LoD instead
of many more built from LoD and classifications. 18 How-
ever, the second approach introduced computational over-
head at the import stage, since the classification visibil-
ity toggling is implemented with Geometry Nodes and the
building of node tree takes a significant amount of time.

3.1.2 Normal Computation

Normals are computed externally using a PCA-based
method and stored into the existing PLY files, before reim-
porting the point cloud into Blender. We decided to offer

18In Conclusions, we discuss why Blender modifiers pose a challenge
for editing with Geometry Nodes.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Input
Node

Output
Node

Mesh to Points
Node

Set Material
Node

Any other
node group

Geometry Geometry

Figure 2: Here, our preferred node tree construction is shown. Mesh to Points node could also be placed after other nodes
but before Set Material node.

this as a separate functionality from importing, to allow the
user to work on the point cloud faster if computed normals
are not the priority in the process.

3.1.3 Viewport Display

Blender requires a Geometry Nodes modifier to convert
unconnected vertices into point instances. The coloured
points are available with the Material Preview shading, but
only if the correct material is applied to the point cloud
(see Set Material node in Figure 2). In EEVEE, disabling
shadow calculations improved performance.

3.2 Editing

We tested Blender’s Geometry Nodes (seen in Figure 3)
on common urban planning operations. Geometry Nodes
are applied to each object via a modifier. An object can
have multiple Geometry Nodes modifiers. Geometry Node
trees can be shared between objects, but the modifiers
and modifier stacks themselves are unique for each object.
Some parameter adjustments were controlled through aux-
iliary objects to allow for interactive transformations. We
also implemented respective functionality in Grasshopper
whenever possible.

Point Copying Points can be duplicated based on con-
ditions such as location, colour, or classification. In our
case, we defined a region using a Cube primitive, identi-
fied points within that region using Object Info and Ray-
cast nodes, and separated the selected geometry from the
rest. We then joined a transformed copy of the selection
with the entire cloud. The transformation of the copied
region was controlled by an empty object.

Point Removal Similarly to point copying, points were
selected based on a user-defined predicate and then re-
moved via the Delete Geometry node. In our case, we used
a plane: through Geometry Nodes, we added and extended
a cube in the direction of the plane’s normal to reach all
possible points that could be projected onto the plane, and
checked if the points were contained inside the cube.

Drawing Points Blender’s Grease Pencil allows strokes
to be converted into mesh geometry, from which points are
sampled onto mesh faces. This method is useful for filling
voids in point clouds and creating irregular structures.

Painting on Points Grease Pencil strokes enable point
attribute modifications based on proximity, allowing for
localized adjustments in colour and classification. Strokes
can be converted into meshes and points within them can
be identified via Raycast node and modified accordingly.
For example, we were able to modify the colour attribute
of the points within stroke meshes, essentially enabling
painting colour into point clouds.

Erasing Points The same principle as with painting on
points can also be applied to point removal. The selected
points do not have their attributes modified, but are instead
deleted.

Flattening Points Flattening removes structures and
shapes in the point cloud while filling gaps. Our first ap-
proach involved removing points as described in Point Re-
moval and sampling points on a defined plane, ensuring
continuity by sampling colours from surrounding points.
An alternative method modified existing point coordinates
instead of deleting and resampling, maintaining texture
consistency but introducing some overlapping points. We
use the second method due to the mentioned texture con-
sistency providing more visually appealing results.

Mesh Tools Blender’s mesh and curve modelling tools
allow geometric structures to be integrated into point
clouds by sampling points from mesh surfaces. The Store
Named Attribute node enables precise control over point
properties. Converted points retain the attributes from ver-
tices they originate from, ensuring consistency in assigned
properties.

3.3 Rendering

Blender’s Shader Editor enables the application of mate-
rials to point clouds for flexible visualization. Different
point attributes can be converted to colour, combined, and
passed to shaders. Both Cycles and EEVEE renderers are
supported, with Cycles offering path-traced realism and
EEVEE providing faster, although less physically accurate
renders.

To better evaluate our methods, we compared our imple-
mentation of the above-mentioned operations with similar
functionality in Rhinoceros 8 and Grasshopper.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 3: An example of Blender Geometry Nodes configuration. This one is used for point copying operation. Notice
the lack of Mesh to Points node or Set Material node – these are present in a different node tree on a Geometry Nodes
modifier right before and after this one.

4 Results

We present the experimental setup, performance analy-
sis, and visual outputs of our comparison of Blender and
Rhinoceros 8 functionality. Rhinoceros was chosen be-
cause it is also used in urban planning, it offers point
cloud manipulation and visualization, and because of its
extension Grasshopper, which employs node-based non-
destructive editing. The latter allowed us to compare node
trees and performances on point clouds to highlight advan-
tages and disadvantages in each program.

4.1 Experimental Setup

Experiments were conducted in Blender and Grasshopper,
using internal debugging tools for timing measurements.
Blender accumulates execution time up to a node, whereas
Grasshopper measures each node separately. These values
are approximate, useful for optimization but not precise
benchmarking.

Certain Grasshopper operations — like point copying
— were limited to smaller datasets due to crashes with
larger ones. The manual LoD was not tested.

Experiments were run on a workstation with dual In-
tel Xeon Gold 6140 CPUs (2.30 GHz, 18 cores each),
256 GB RAM, an NVIDIA RTX A4000 GPU, and Win-
dows Server 2022 operating system. Note that the work-
station was accessed remotely and while processing unre-
lated workload of various intensity throughout our experi-
ments, although we made sure that we were given enough
resources for that to not impact the performance of the
software. The dataset was a 6.4-million-point subset of

Tokyo LiDAR data19.

4.2 Performance Evaluation

Execution times were measured for Point Copying, Point
Removal, and Flattening Points in both applications (Ta-
bles 1 and 2), with four additional measurements for
Blender where the same operations were not possible in
Rhinoceros. We noticed that Blender performed opera-
tions about a thousand times faster on roughly the same
number of points. Maths nodes and comparison related
nodes cost almost no time, while nodes operating on ge-
ometry execute the longest (Join Geometry, Delete Geom-
etry, Store Named Attribute). A Raycast node, which was
used in some operations for segmenting points into regions
to be transformed, also contributed to the final time con-
siderably, although it was never the bottleneck.

The node trees in Blender generally contained fewer
nodes than in Grasshopper, resulting in more maintainable
node trees and fewer operations on the point cloud per
tree. However, Blender experienced performance drops
when using paint tools on points due to attribute recalcula-
tions. Grasshopper offered more efficient transformations,
but was more prone to crashes with large datasets. We
attributed this to the fact that each node in Grasshopper
copies the data it operates on, greatly increasing memory
consumption.

Blender supported advanced point cloud attributes, en-
abling better customization. Grasshopper’s support was
limited to position, colour, and normals.

19https://3dview.tokyo-digitaltwin.metro.tokyo.
lg.jp/, section Shinjuku Ward, figure 09LD1638

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://3dview.tokyo-digitaltwin.metro.tokyo.lg.jp/
https://3dview.tokyo-digitaltwin.metro.tokyo.lg.jp/


Table 1: Execution times for operations in Blender. In the Bottleneck column, we note the nodes which contribute the
most to the computation time, and their execution time.

Operation Nodes Time Points Bottleneck

Point Copying 10 0.29 s (~340k points) Separate Geometry node (0.15 s), Join Geometry
node (0.12 s)

Point Removal 9 0.11 s (~460k points) Delete Geometry node (0.11 s)
Drawing Points 4 0.21 s (~18k points added) Distribute Points on Faces node (0.21 s)
Erasing Points 8 0.26 s (~200k points) Delete Geometry node (0.26 s)
Colouring Points 7 + 7* 0.50 s (~200k points coloured) Store Named Attribute node (0.50 s)
Flattening Points 13 0.11 s (~880k points) Store Named Attribute node (0.11 s)
Mesh to Points 11 0.02 s (~104k points) Points on Faces node (0.02 s)

* There are two node groups, one applied to the point cloud object and one applied to the Grease Pencil object.

Table 2: Execution times for operations in Grasshopper.

Operation Nodes Time Points Bottleneck

Point Copying 16 91 s (~340k points) Point in Brep (46 s), Construct Point Cloud (44 s)
Point Removal 9 90 s (~460k points) Point in Brep (45 s), Construct Point Cloud (44 s)
Flattening Points 19 65 s (~880k points) Construct Point Cloud (41 s)

Table 3: Rendering times for Tokyo dataset. With Cycles
and EEVEE, we applied two different materials on points.

Renderer Shader Time

Blender EEVEE Principled BSDF 3.9 s
Emission 2.8 s

Blender Cycles Principled BSDF 40 s
Emission 19 s

Rhino Renderer / <1 s *
* Excludes post-processing (~3 s).

4.3 Rendering Comparison

To highlight the differences, we provide four images, ren-
dered in both tools (Figure 5). Blender’s Attribute node
allowed custom materials, enhancing visualization. Ren-
dering performance (Table 3) showed Blender Cycles was
slower but allowed material flexibility and more realism.
The difference in rendering times is also seen from the
perspective of the shader used for shading points. The
Emission shader is not influenced by its surroundings and
therefore requires less computation. Rhinoceros rendered
quickly, but additional post-processing, such as gamma
correction and tone-mapping, generated a significant delay
(notably up to 3 seconds). Finally, the visual comparison
of Cycles and EEVEE is shown in Figure 4. In the Cy-
cles render, the transition between points close together is
smoother, which might be due to physically correct shad-
ing or as a result of denoising. There is also a slight differ-
ence in shadows, where EEVEE produces lighter shadows.

5 Conclusions

Blender provided a more stable and responsive node-based
editing experience than Rhinoceros, particularly with opti-
mized Geometry Nodes. However, our limited experience
with Rhinoceros means that certain Grasshopper config-
urations may not have been fully optimized. Preprocess-
ing techniques, such as point cloud reduction, could im-
prove performance, but reversing reductions during ren-
dering would likely negate the benefits.

Blender’s lack of shared modifier stacks makes editing
multiple levels of detail and classification clusters ineffi-
cient without custom scripting. Scripted operators could
automate tasks like applying Geometry Nodes across ob-
jects and batch-processing transformations. Additionally,
Grease-Pencil-based point erasure struggles with large
datasets, introducing severe lag due to simultaneous ge-
ometry updates. A solution could involve temporarily
disabling Geometry Nodes during drawing, working with
a lower-resolution representation, or applying Geometry
Nodes only to selected objects directly interacting with
Grease Pencil strokes.

Both Blender and Rhinoceros support scripting exten-
sions, but their effectiveness for high-performance point
cloud processing is limited. Both offer a Python scripting
interface, with Rhinoceros supporting C# as well, which
does introduce some flexibility for point cloud editing, al-
though API structure and transfer of data between the soft-
ware and the script introduces a lot of overhead, resulting
is slow data processing.

Our study explored procedural point cloud and mesh
editing for urban planning using Blender, comparing it to
Rhinoceros Grasshopper. Blender enabled non-destructive
manipulation via Geometry Nodes and interactive modi-

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 4: A comparison of rendering in Cycles (left) and EEVEE (right) rendering engines. Most notably, the borders
between points are more pronounced in EEVEE render and the darker spots are brighter than in Cycles.

fication using Grease Pencil. While Rhinoceros handled
basic transformations more efficiently, Blender excelled
in complex node-based operations, attribute manipulation,
and classification-based filtering. Both Blender’s render-
ers were slower than Rhinoceros’s default renderer (ignor-
ing the post-processing lag), but they enabled more flexi-
ble and appealing visualizations.

Blender’s procedural point cloud editing capabilities
show promise, but certain challenges remain, including
modifier stack limitations and slow Grease Pencil process-
ing. With further development and community-driven im-
provements, Blender could become a powerful tool for
large-scale urban modelling and design workflows.

References

[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel,
S. Behnke, C. Stachniss, and J. Gall. Semantickitti: a
dataset for semantic scene understanding of lidar se-
quences. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), 2019.

[2] Geodetic Institute of Slovenia. izvedba laserskega
skeniranja slovenije. blok 35 – tehnično poročilo o
izdelavi izdelkov. Technical report, Geodetic insti-
tute of Slovenia, 2015-2023.

[3] Y. Guo, H. Wang, Q. Hu, H. Lı́u, L. Liu, and M. Ben-
namoun. Deep learning for 3D point clouds: A sur-
vey. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 43:4338–4364, 2021.

[4] Q. Hu, B. Yang, S. Khalid, W. Xiao, N. Trigoni,
and A. Markham. Towards semantic segmentation of

urban-scale 3D point clouds: A dataset, benchmarks
and challenges, 2021.

[5] M. E. Ihle and V. Wichmann. Blurring boundaries
between scientific and artistic representation of land-
scapes. Journal of Digital Landscape Architecture,
2024.

[6] D. Mongus, N. Lukač, and B. Žalik. Ground and
building extraction from lidar data based on differen-
tial morphological profiles and locally fitted surfaces.
ISPRS Journal of Photogrammetry and Remote Sens-
ing, 93:145 – 156, 2014.

[7] A. Mustafà, X. W. Zhang, D. G. Aliaga, M. Bruwier,
G. Nishida, B. Dewals, S. Erpicum, P. Archambeau,
M. Pirotton, and J. Teller. Procedural generation
of flood-sensitive urban layouts. Environment and
Planning B Urban Analytics and City Science, 2018.

[8] X. Roynard, J. Deschaud, and F. Goulette. Paris-lille-
3d: a large and high-quality ground-truth urban point
cloud dataset for automatic segmentation and classi-
fication. The International Journal of Robotics Re-
search, 37:545–557, 2018.

[9] S. Schmohl, A. Vallejo, and U. Soergel. Individ-
ual tree detection in urban als point clouds with 3D
convolutional networks. Remote Sensing, 14:1317,
2022.

[10] W. Tan, N. Qin, L. Ma, Y. Li, J. Du, G. Cai,
K. Yang, and J. Li. Toronto-3D: A large-scale
mobile lidar dataset for semantic segmentation of
urban roadways. In 2020 IEEE/CVF Conference

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Tokyo dataset rendered in Blender Cycles. Principled BSDF material
is used, the color is sampled from each point’s color attribute.

(b) Classification render in Blender Cycles. Principled BSDF material is
used, the color is sampled from each point’s classification attribute.

(c) Elevation render in Blender Cycles. Principled BSDF material is used,
the color is sampled from the Z coordinate and passed as hue angle in
HSV color space. The Z coordinate is normalized beforehand to the in-
terval [0,1] where 0 maps to the Z coordinate value of the lowest point
and 1 maps to the Z coordinate value of the highest point.

(d) Tokyo dataset render in Rhinoceros with the default renderer. Some
post-processing gamma-correction was applied.

Figure 5: Renders of the Tokyo dataset in Blender and Rhinoceros. The Cycles renders show more flexibility in data
representation (colour, classification, elevation) and showcase features that emphasize depth in the image (shadows and
point shading). Shadows that are shown in the Rhinoceros render, are baked into the point colour information, captured
at the scanning stage, while in Cycles renders the shadows are produced with ray-tracing on the point cloud.

on Computer Vision and Pattern Recognition Work-
shops (CVPRW), page 797–806. IEEE, 2020.

[11] P. R. W. Urech, M. A. Dissegna, C. Girot, and
A. Grêt-Regamey. Point cloud modeling as a bridge
between landscape design and planning. Landscape
and Urban Planning, 203:103903, 2020.

[12] A. van Natijne. Geotiles: readymade geodata with
a focus on the Netherlands. Technical report, Delft
University of Technology, 2023.

[13] J. Vijaywargiya and A. Ramiya. Metamorphism of
als point data for multitude application. Isprs Annals
of the Photogrammetry Remote Sensing and Spatial
Information Sciences, X-1/W1-2023:25–31, 2023.

[14] Y. Wang, Q. Chen, Q. Zhu, L. Liu, C. Li, and
D. Zheng. A survey of mobile laser scanning appli-
cations and key techniques over urban areas. Remote
Sensing, 11:1540, 2019.

[15] W. Xiao, H. Cao, M. Tang, Z. Zhang, and N. Chen.
3D urban object change detection from aerial and ter-
restrial point clouds: A review. International Journal
of Applied Earth Observation and Geoinformation,
118:103258, 2023.

[16] H. Yang. Sketch2CAD: 3D CAD model reconstruc-
tion from 2D sketch using visual transformer, 2025.

[17] X. Yang and D. Delparte. A procedural modeling
approach for ecosystem services and geodesign vi-
sualization in old town pocatello, idaho. Land, 2022.

[18] H. You, S. Li, Y. Xu, Z. He, and D. Wang. Tree
extraction from airborne laser scanning data in urban
areas. Remote Sensing, 13:3428, 2021.

[19] J. Zhu, J. Gehrung, R. Huang, B. Borgmann, Z. Sun,
L. Hoegner, M. Hebel, Y. Xu, and U. Stilla. Tum-
mls-2016: an annotated mobile lidar dataset of the
tum city campus for semantic point cloud interpreta-
tion in urban areas. Remote Sensing, 12:1875, 2020.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)


	Introduction
	Background
	Procedural Methods in Urban Modelling
	Point Cloud Modelling in Urban Planning
	Existing Point Cloud Processing Tools

	Methods
	Preprocessing
	LoD and Classifications
	Normal Computation
	Viewport Display

	Editing
	Rendering

	Results
	Experimental Setup
	Performance Evaluation
	Rendering Comparison

	Conclusions

