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Abstract

Character animation is a classic problem in computer
graphics. Traditionally, characters are modeled as polyg-
onal meshes and animated using a skeleton. The standard
method, linear blend skinning, transfers bone transforma-
tions to the skin through weighted averages [8]. While
some tools automate skinning weight generation, manual
fine-tuning by artists is still common. An alternative is
the “Delta Mush” method [12], which involves: 1) ani-
mating with simple skinning weights, 2) smoothing the
mesh to eliminate artifacts, and 3) restoring surface de-
tails by adding displacement vectors (“deltas”). Despite
its simplicity and efficiency [9], Delta Mush does not pre-
vent self-intersections. This work explores addressing this
limitation by detecting self-intersections using continuous
collision detection and modifying delta vectors for valid
results.

Keywords: animation, delta mush, continuous collision
detection, skinnning, self-intersection

1 Introduction

The animation of scenes and their virtual characters is a
fundamental element in the development of filmmaking,
special effects, and computer games. In traditional anima-
tion, artists had to draw the movements frame by frame,
which is a time-consuming process. However, with ad-
vances in computer technology, artists can increasingly
rely on computer-generated imagery (CGI), which can be
used to create almost any kind of moving image.

Computer-generated animation is the virtual equivalent
of ”stop motion”, where temporal movement is achieved
by placing animated characters in different poses frame-
by-frame. However, such a manual procedure would be
quite labor-intensive, so in practice usually only discrete
keyframes are defined, and in-between frames are au-
tomatically generated using interpolation methods. The
keyframes are placed on a virtual timeline, where the dy-
namics of the movement can be further refined by adjust-
ing the temporal spacing to speed up or slow down the
movement.

Three-dimensional characters are typically modeled us-
ing polygonal surface meshes. A mesh could consist of
thousands or even millions of elements, so directly spec-
ifying the precise movement of each point of the surface
would simply be unfeasible. In practice, animations are
defined by specifying affine transformations for the el-
ements (bones) of some kind of skeleton structure that

are combined to determine the movement of the surface
mesh [13]. The correspondence between the skeleton and
the mesh is created in the process known as skinning, for
which the most popular technique is to simply combine
the transformations of each bone using weighting func-
tions defined over the mesh. While many methods exist for
the automatic computation of such skinning weights [7], in
practice artists generally have to rely on extensive manual
tuning (weight painting) to achieve the desired look. A
recently developed approach that has the promise of cir-
cumventing the need for manual weight painting is known
as Delta Mush (DM) [12]. This technique is based on the
observation that even very simple skinning methods (e.g.
using nearest-neighbor weights) are acceptable over most
of the model, with problems arising only in certain regions
in the form of sharp turns. Getting rid of such artifacts is
possible by simply smoothing the geometry of the trans-
formed mesh (mush). Such smoothing, however, will also
destroy high-frequency details, which need to be restored
in the form of displacement vectors (deltas).

Although DM alleviates some of the difficulties associ-
ated with the traditional animation workflow and can even
be made suitable for real-time computation [9], it also has
some well-known limitations. In particular, just like most
other skinning methods, DM does not prevent the self-
intersection of the mesh. The starting point of our work
is the observation that the delta vector field playing a key
role in the Delta Mush approach could also be used to han-
dle self-intersections in a natural way.

The main subject of the current work is a method
for resolving self-intersections during DM-based anima-
tions using the methods of Continuous Collision Detection
(CCD). In section 2, an overview of the relevant technical
background and related work is given, followed by a de-
tailed description of Delta Mush in section 3. Then, in
section 4, we present our proposed method for resolving
self-intersections and present some practical results in sec-
tion 5. Finally, the report concludes with an overview of
various avenues for future research.

2 Previous Work

2.1 Skeletal Animation

In 3D animation, characters are represented by textured
triangular meshes, called skins [13], which can contain
thousands or millions of triangles. Animating each vertex
individually is impractical, so skeletal animation is used.
This technique links a surface mesh to a skeleton, a hier-
archical set of ”bones” that define poses and keyframes.
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The skeleton, often starting in a default T-pose, controls
mesh deformation through transformations like position,
rotation, and scaling. Bones are typically arranged in a
tree-like hierarchy, where moving one bone affects con-
nected ones (e.g., moving a thigh moves the lower leg).
The process of linking the skeleton’s movement to the
mesh is called skinning.

2.2 Skinning

Skinning is one of the most important techniques in 3D an-
imation [8], allowing a mesh to be linked to a skeleton so
that the mesh deformation naturally follows the movement
of the skeleton, which is particularly important for charac-
ter animation. Skinning methods used in practice, such as
Linear Blend Skinning, apply weighted combinations of
affine transformations (e.g., displacement, rotation) to sur-
face points. Each bone is assigned a corresponding weight
function (e.g., skinning weight), determining the influence
of the bone’s movement on each vertex of the mesh. The
weights are often represented to the user by color-coding:
each bone has an assigned color, and weights are visu-
alized through color blending. However, setting optimal
weights is challenging. The available methods may not
be sufficient, often requiring manual intervention to refine
the weights for the desired effect. In most state-of-the-art
graphics engines, the skinning process is performed on the
GPU within a shader program.

2.3 Finding skinning weights

Determining the weight distribution often involves manual
fine-tuning to achieve the desired effect, but it is useful
to have a default weight distribution with the following
properties:

1. The weights form a convex combination ,

2. The distribution of weights along the surface is con-
tinuous (at least C0), smooth (at least C1), and uni-
formly distributed,

3. The size of the weights decreases as we move further
away from the bones that correspond to them.

The Bone Heat method[1] models weight distribution
as heat diffusion, ensuring smooth and natural results by
solving an energy minimization problem. While effective,
manual adjustments are often needed for complex mod-
els. Proper weight distribution is critical for realistic an-
imations, as poorly defined weights lead to artifacts like
stretching or collapsing. Advanced methods aim to reduce
manual effort while maintaining quality. One alternative
to automatic skinning is the Delta Mush method [12, 9],
which forms the foundation of our current work.

2.4 Handling self-intersections, implicit
skinning

Self-intersections occur when parts of a deformed mesh
penetrate each other, leading to visually unacceptable re-
sults. Correcting these artifacts is essential, especially
in high-quality animations. One approach involves man-
ually creating ”corrective blendshapes,”[10] where ani-
mators sculpt displacement vectors to fix intersections.
While effective, this process is time-consuming and labor-
intensive.

Implicit skinning [15] offers an automatic solution by
representing the mesh as the level set of an implicit
function. This guarantees collision-free deformations by
blending Euclidean distance fields of submeshes corre-
sponding to each bone. The final surface is extracted us-
ing methods such as marching cubes [11], or by displacing
vertices to the implicit surface. Although robust, implicit
skinning is computationally expensive and hardly suitable
for real-time applications.

3 Delta Mush

Delta Mush is a method first proposed by Mancewicz et
al. [12] and later improved and analyzed by Le and Lewis
[9], that provides a solution some of the long-standing
challenges associated with skeleton-based mesh anima-
tion. It has some important advantages over more tradi-
tional methods, as it produces acceptable animations with-
out carefully constructed skinning weights – in fact it only
needs the most basic kind of weighting based on e.g. near-
est neighbor interpolation [7]. The key observation moti-
vating this approach is that when animating with such sim-
ple weights the result mostly has the desired shape, with
the exception of some high-frequency artifacts (e.g. sharp
edges) arising in the vicinity of skeleton joints – see Fig-
ure 1. Thus, by applying sufficiently strong smoothing to
the deformed mesh, these artifacts can be made to disap-
pear entirely.

Figure 1: Rest pose (left) and LBS deformation with sim-
ple 0-1 weighting (right).

The key operation of Delta Mush is thus computing a
smoothed version of the mesh (called the mush), both in
the initial resting position (T-pose), and the current de-
formed pose. While the mush for the deformed pose is
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expected to be free of common skinning artifacts, it will
also lose various geometric details compared to the origi-
nal surface. Thus we compute difference vectors (deltas)
between the original mesh and its mushed version with re-
spect to a vertex-based local coordinate system – see Fig-
ure 2 for an illustration. By adding the same delta vectors
to the mush of the deformed mesh the lost details can be
restored and we arrive at an artifact-free deformed mesh.
The steps of this process are shown in Figure 3.

Figure 2: Illustration of the smoothed mesh and its delta
vectors in the rest pose (left) and the deformed pose (right).

3.1 Laplacian smoothing

A crucial element of Delta Mush is the smoothing of the
mesh. For this purpose, usually Laplacian smoothing [2] is
employed, which is a commonly used technique in polyg-
onal mesh processing. The basic idea is very simple: each
mesh vertex will be some weighted average of its immedi-
ate neighbours. The simplest version of Laplacian smooth-
ing simply moves each vertex towards its neighbours:

p′
i =

N

∑
j=0

w jp j, (1)

where pi and p′
i denote the original and smoothed posi-

tions of vertices respectively, while wi are scalar weights
– popular choices include uniform weights and cotangent
weights.

3.2 Computing and restoring delta vectors

After Laplacian smoothing the mesh loses not only the var-
ious animation artifacts, but also many important geomet-
ric details that need to be restored, which is possible with
the use displacement vectors called deltas.

First a coordinate system is created at each point of the
smoothed rest pose mesh, based on the normal, tangent
and bi-tangent vectors. The delta vector is calculated sim-
ply as the coordinates of the vertex on the unsmoothed
mesh, expressed in this coordinate system, with the cor-
responding vertex on the smoothed mesh chosen as the
origin.

Later, after the mesh has been smoothed in a deformed
pose, the same delta vectors are added as displacements to

Figure 3: Illustration of the delta mush method: original
rest pose mesh (top left), smoothed rest pose mesh (top
right), smoothed deformed mesh (bottom left), and final
deformation (bottom right).

restore details. Recall that the vectors are expressed in a
local system, which is to be changed in each step of the
animation to the normal, tangent and bi-tangent vectors
of the current deformed (and smoothed) mesh, before the
deltas are restored.

4 Proposed Method

The main goal of this research project is to investigate
methods for preventing the self-intersection of meshes
when they are animated using a Delta Mush approach.
Our approach is based on the observation that displac-
ing the smoothed mesh with the delta vectors can be in-
terpreted as moving the smoothed mesh through space,
with the delta vectors prescribing a velocity for each ver-
tex. When the mesh collides with itself during its move-
ment, that signals a potential self-intersection at the fi-
nal configuration. Thus, if neither the original, nor the
deformed-then-smoothed mesh contain self-intersections,
and the movement of mesh elements is terminated right be-
fore their collision, the displaced mesh must also be free
of self-intersections.

4.1 Continuous Collision Detection

Collision Detection (CD) is a classical problem within the
fields of physical simulation and computer graphics [5].
In this work, the focus is on Continuous Collision De-
tection (CCD) which is a general class of collision detec-
tion techniques that differ from conventional CD in that
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the latter examines collisions at fixed intervals, checking
whether contact has occurred between objects on a frame-
by-frame basis. CCD, on the other hand, scans collisions
over the entire trajectory of the object, taking into account
the velocity, and thus prevents collisions from occurring
between frames. CCD is a vast subject, with a rich litera-
ture – we refer the interested reader to the work of Wang et
al. [16], that provides a detailed overview of the field with
large-scale benchmarks of the various algorithms, and es-
tablishes the current state-of-the-art.

Assume that the mesh is composed of triangles and that
the points move along a linear path in time. The possibil-
ity of a collision arises in two main cases: when a point
collides with a triangle (vertex-face collision), or when an
edge meets another edge (edge-edge collision). In both
cases, the goal is to determine whether a contact occurred
between time t0 and t1, and if so, exactly when this contact
occurred.

In the case of vertex-face collision, contact is inves-
tigated between a point p and three vertices of a trian-
gle (v1,v2,v3). The CCD algorithm is used to calculate
whether the point p touches the triangle within the time
interval [t0, t1]. The contact occurs if the point falls in the
plane of the triangle and is within the boundary of the tri-
angle. In the case of edge-edge collision, we track the po-
sition in time of two edges, e1(p1, p2) and e2(p3, p4). The
algorithm here examines whether the two edges intersect
within [t0, t1]. This calculation is performed considering
the minimum distance between edge pairs, and if the dis-
tance is zero, a collision occurs. In both cases the Time of
Impact (TOI) is to be determined. The objective is to find
the time (t) in a given interval (e.g. t ∈ [0,1]t [0,1]t ∈ [0,1])
when the trajectories of two objects intersect.

To arrive at a CCD method that is maximally robust,
while remaining as efficient as possible, [16] introduced an
improved version of a classical interval-based method due
to Snyder [14]. For more details, we refer to [16] and the
references therein. In our experiments we used the open-
source implementation of this algorithm, provided by the
original authors1.

4.2 Delta Mush with CCD

Let’s assume we run CCD for our Delta Mush deforma-
tion. To prevent self-intersection, a natural idea is to
rescale the delta vectors of colliding vertices in propor-
tion to their TOI. A naive approach would be to do a sin-
gle sweep of CCD queries for each element based on the
movement from the fully mushed mesh, and rescale the
delta vectors based on the TOI of their vertices. This how-
ever would not be entirely correct, as stopping the move-
ment of a set of vertices will also modify the trajectory of
adjacent triangles and edges.

Instead we apply a more complex iterative approach. At
every iteration we run CCD and identify the smallest TOI

1https://github.com/Continuous-Collision-Detection/
Tight-Inclusion

among all triangle-vertex and edge-edge collision events.
Based on the minimal TOI, we scale each delta vector ac-
cordingly, and freeze the colliding elements in place for
all subsequent iterations. These iterations are repeated un-
til no colliding elements are found by CCD.

In more detail, we make the assumption that the CCD
algorithm returns a TOI between 0 and 1. Assume fur-
thermore that we are currently in the ith iteration of CCD,
and the last collision event happened at time ti−1 (we set
t0 = 0). The minimal TOI found by CCD is denoted τ and
Vi = {v1, . . . ,v4} is the set of vertices involved in the cor-
responding collision. We set ti = ti−1 + τ(1− ti−1), scale
by ti all delta vectors of vertices not previously frozen, and
mark vertices in Vi as frozen for subsequent iterations.

The steps of this algorithm are illustrated in Figure 4.
As can be seen, the deltas are adjusted to find the smallest
TOI at the collision. Red color indicates edge-to-edge col-
lisions and blue color indicates vertex-to-face collisions.
The dots represent the actual collision points in the itera-
tion step. It can be seen that using this method, it is indeed
possible to scale delta vectors so that self-intersections do
not occur.

Figure 4: Iterations of our CCD-based Delta Mush algo-
rithm (from left to right, and top to bottom: steps 1, 5, 10
and 20).

4.3 Improving mesh quality

Our method as described might be capable of prevent-
ing self-intersections, but the shape quality of the result-
ing mesh can be very poor. To improve the mesh qual-
ity we apply additional smoothing to its vertices during
our iterations. We have already discussed ordinary Lapla-
cian smoothing in section 3, which can be thought of
smoothing the surface in its normal direction. We also
apply tangential smoothing, where the mesh vertices are
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constrained to move within the tangent plane of the sur-
face. The process of tangential smoothing is carried out
in several iterations, similar to Laplace smoothing, where
a smooth surface is obtained by averaging the adjacent
points. The main difference is that the neighbouring points
are first projected onto the tangent plane of the central
point before averaging is performed. This ensures that
the smoothing does not result in shrinkage, as the points
move only along the surface and not in any other direction.
Through the iterative process, surface roughness can be
subtly removed without changing the mesh too much. We
compare the results with and without tangential smoothing
on Figure 5.

Figure 5: Illustration of tangential smoothing (left: with-
out smoothing, right: with smoothing).

4.4 Improving performance

To optimize the algorithm, we can focus on reducing col-
lision checks for vertices, tiles, and edges unlikely to col-
lide. Instead of checking the entire mesh, we inspect ar-
eas within a specific radius of the transformed node, as
collisions and self-intersections are most likely in curved
regions. The radius is determined by the bone size and
surrounding mesh, and CCD is run only in these marked
areas.

Another optimization involves Axis-Aligned Bounding
Boxes (AABB), which filter out mesh parts guaranteed not
to collide. AABBs define the minimum and maximum co-
ordinates along the x, y, and z axes for elements at their
initial and final positions. If two AABBs don’t intersect,
no collision can occur, avoiding unnecessary CCD calcu-
lations. This method is computationally efficient, requir-
ing only simple coordinate comparisons. AABB filtering
significantly improves performance, especially for large or
complex meshes, by limiting collision checks to relevant
regions.

We compare the performance of our implementation
with and without the AABB on Figure 6. As can be seen,
without the filtering the method takes considerable time,
but with filtering enabled the method runs much faster.

5 Results

In this Chapter we evaluate the effectiveness and perfor-
mance of the proposed methods. All results in the report

Figure 6: Runtime of CCD variants for different models.

were produced using a prototype animation software de-
veloped by the author, that is based on a basic Qt2 frame-
work by P. Salvi3, and uses the OpenMesh [3] and Eigen
[6] libraries.

We applied our method to a variety of example defor-
mations, as shown in Figure 7, Figure 8, Figure 9, Fig-
ure 12, Figure 11, Figure 10. On each figure, the result of
the default Delta Mush deformation is shown on the left,
while the result using the proposed CCD-based scaling of
delta vectors is shown on the right. In each case self-
intersections were resolved successfully. From our per-
sonal experience, corrections such as that shown in would
take hours of manual work using the tools available in e.g.
Blender.

Figure 7: Example 1.

Figure 8: Example 2.

2https://doc.qt.io/qt-5/
3https://github.com/salvipeter/

sample-framework
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Figure 9: Example 3.

Figure 10: Example 4.

Figure 11: Example 5.

Figure 12: Example 6.

6 Conclusions and Future Work

In this work, we presented an improved method of delta
mushing, specifically targeting the limitations of tradi-
tional techniques for dealing with self-intersections in
character animation. By integrating continuous collision
detection (CCD) and delta mush, we are able to accurately
and efficiently detect and handle collisions, ensuring that
the mesh geometry is not corrupted and no errors are intro-
duced during delta mush based animation. Our approach
has the potential to reduce the need for manual interven-
tions by the user. Tests have shown that our technique per-
forms well in a variety of deformation scenarios.

Our future goal is to further optimize the method pre-

sented here, in particular the integration of continuous col-
lision detection (CCD) and delta mush. During the opti-
mization, we will strive to reduce the computation time to
make the technique more suitable for the needs of real-
time applications, such as video games and interactive vir-
tual reality applications. In particular, we plan to improve
the implementation of delta mush, based on the ”direct”
approach of [9]. Enhancing our approach to produce more
realistic deformation with some kind of physical simula-
tion also looks promising.

Finally, a very intriguing possibility is the integration
of delta mush based deformation with the use of blend-
shapes [10] or sculpts [4]. Note that blendshapes are often
prescribed as displacements (delta vectors) with respect
to some skinned pose, which ressembles the basic idea
of delta mush – the key difference being the mesh from
which the displacement are defined (the smoothed mesh
for delta versus the skinned mesh for blendshapes). This
suggests the possibility of a unified framework, where the
mush becomes a central animation primitive and various
deformers are defined as modifications of its delta vectors,
thus carrying even further the original idea of delta mush
deformers first outlined in [12].
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