
Rendering Night Cities

Tereza Hlavová*

Supervised by: doc. Ing. Jiřı́ Bittner Ph.D.†

Department of Computer Graphics and Interaction
Czech Technical University in Prague

Prague / Czech Republic

Abstract

This paper focuses on efficient real-time rendering of cities
at night, working with open geographic and geometric data
of cities. Our goal is to find a technique we can reuse for
a generalized night city renderer in the future. We present
a solution that implements a reservoir-based spatiotempo-
ral importance resampling method ReSTIR to deal with
many light sources problem. Our implementation is writ-
ten using the Vulkan API and its hardware ray tracing ex-
tensions. The implementation uses an open, standardized
format CityGML to load city descriptions and geometry.
Apart from using real-world street light placement, we ex-
plore the possibilities of generating windows and moving
cars as light sources. Results regarding quality and perfor-
mance are demonstrated on freely available city models.

Keywords: ReSTIR, Vulkan API, ray tracing, CityGML

1 Introduction

In recent years, the possibility of virtually browsing real-
world locations has increased due to the progress of and
wider usage of 3D reconstruction methods. Models of
whole cities are even freely available in some cases. In-
spiration for this work came from an online application
rendering the city of Prague [6]. It implements setting the
day and time and positions the sun accordingly to present
an immersive image. But at night-time, the area is left in
ambient lighting only, as the application does not take real
factors, like many street lamps, into account. For the pur-
poses of a simple visualization of city sceneries at night-
time to a simulation of light pollution, rendering would
require working with many light sources, preferably real-
time. Using many light sources in the scene requires a lot
of computation and it is time-consuming. To reduce the
computation time for every frame, one solution could be
to build acceleration data structures over the light sources
to minimize the amount of shadow rays that need to be
traced. However, considering both static and dynamic
light sources, for example moving cars through the city,
changing advertisement displays or lights from interiors

*hlavoter@fel.cvut.cz
†bittner@fel.cvut.cz

through windows being shut on/off, would require these
data structures to be rebuilt, again causing time-consuming
computation. Instead, we use a state-of-art method called
ReSTIR [1] that does not require maintaining a compli-
cated structure. We demonstrate our effective implemen-
tation utilizing hardware-accelerated ray-tracing on open
geometric and geographic data.

In Section 2, we introduce existing methods used for
rendering with many lights in the scene. We then explain
chosen method, ReSTIR, and how it is used in our work
in greater detail in Section 3. In Section 4, we go over our
implementation. We then showcase the results in Section 5
and discuss limitations and future work in Section 6.

2 Related work

Rendering at nighttime can be explored from multiple
points of view with different problems as the focus. An
interesting problem to solve could be an efficient compu-
tation of natural illumination of objects by the moon, stars
and atmosphere at night [8]. However, focusing on city
scenes, our work is more focused on illuminating the scene
mainly by a large number of human-made light sources.

The many-lights problem has posed an issue in the ren-
dering scene for decades now. Naı̈ve methods would just
limit the number of light sources for a given scene or scene
part and manually pick the most desirable ones. For offline
rendering nowadays, given GPU rendering acceleration,
we could theoretically use all of the light sources, at the
cost of much more time spent evaluating light sources that
contribute almost nothing to the result. With real-time ren-
dering, however, this would not be acceptable at all. For
the given reasons, methods trying to solve the many-lights
problem were developed.

For offline rendering, a notable ray tracing method used
to solve the many-lights problem was introduced under the
name LightCuts [15]. The method simplifies the light sam-
pling by using clusters of light sources. They approximate
all the light sources they contain. However, different parts
of the image usually require different partitioning of the
light sources into the clusters. For this, the method uses
a binary tree, the so-called light tree, to form clusters of
light sources by placing light sources into leaves and then

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics



Figure 1: Choosing initial candidate with weighted reservoir sampling.

performing cuts of the tree.
Another prominent offline rendering technique is Ma-

trix Row-Column Sampling [7]. It uses a transfer matrix
of light sources and samples interactions, computing only
a subset of rows and columns fully, reusing these calcula-
tions for the rest of the matrix.

From real-time techniques, a rasterization method for
rendering cities at night proposed by Conte [5] is a com-
bination of Facade-Cluster visibility technique, Coherent
Hierarchical Culling (CHC), and integration of LightCuts
onto GPU for real-time use with rasterization. It is limited
by its rasterization nature, so expanding the method for
global illumination or area light sources would be com-
plex.

A dynamic many-light sampling real-time ray tracing
method was proposed by Moreau et al. [10], it is working
with a two-level bounding volume hierarchy (BVH) stor-
ing the light sources, which it uses to estimate where the
most important light sources for a given point on the to-be-
shaded surface are and sample mostly those, thus limiting
the number of shadow rays spatially. In offline rendering,
a single BVH for all light sources suffices, but with dy-
namic scenes, the whole BVH would have to be rebuilt,
causing a bottleneck for real-time rendering. The method
groups light sources into separate bottom-level accelera-
tion structures (BLAS). They are grouped in a top-level
acceleration structure (TLAS). With this division, a mov-
ing light source causes its BLAS and TLAS to be rebuilt,
while other BLASes can stay untouched.

Bitterli et al. [1] introduced a reservoir-based spatiotem-
poral importance resampling method for direct illumina-
tion, ReSTIR. It does not rely on complex data struc-
tures that would require time-consuming rebuilding as
with lights BVH in the previous method. It instead reuses
once-computed sampling probabilities, both temporally
and spatially between pixels. This method proved to be
more efficient in terms of visual quality and speed of con-
vergence, while also being scalable. Later modifications
demonstrated also a variant for global illumination [12],
volumetric rendering [2], and path tracing [9]. For these

reasons, we chose ReSTIR as a base for our implementa-
tion.

In September 2018, Nvidia introduced their GeForce
RTX and Quadro RTX GPUs, bringing support for hard-
ware ray-tracing. This opened the possibility for wide us-
age of real-time ray-tracing rendering and together with
it brought in methods that would take advantage of this
feature. With ray-tracing, limiting the number of shadow
rays is extremely important, as every ray-trace operation
is costly in real-time application.

3 ReSTIR for Night City Rendering

ReSTIR works under the assumption that only a small sub-
set of light sources in the scene will significantly influence
the result for a given illuminated visible point. For this
purpose, a structure called a weighted reservoir is used.

In a simple variant, a weighted reservoir structure car-
ries its sample candidate y, total number of seen sam-
ples M, sum of their weights wsum and a control weight
W . In our case, samples will be chosen light sources and
weighted reservoir would be set up for every pixel.

The reservoir structure has a defined update function,
which is used to evaluate a new sample xi with its weight
wi. The reservoir either discards it or takes it for its cho-
sen candidate sample, discarding the previous one, with
probability:

p =
wi

wsum +wi
. (1)

Struct contents and update function pseudocode is
shown in Algorithm 1.

The weighted reservoir sampling technique chooses N
random samples out of all M. These samples are used
to update the weighted reservoir. The light source’s es-
timated importance for the sample can be measured as the
length of exit radiance from the shaded point illuminated
by said light source. Weight wi is then computed here as
the light source’s importance divided by the probability of
choosing the light out of all of the M.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics



Algorithm 1 Weighted Reservoir

struct RESERVOIR
y = 0
wsum = 0
M = 0
W = 0
function UPDATE(xi , wi , mi)

wsum += wi
M += mi
if rand() ¡ (wi/wsum) then

y = xi
end if

end
end

Control weight W is used for the final shading after the
sample is truly chosen. It should be set to zero in cases
of the visible point being shadowed from the light source
sample. It is otherwise updated as:

W =
wsum

importancei ·M
. (2)

Initial candidate selection and described weighted reser-
voir update can be seen in Figure 1.

While the use of weighted reservoirs already improves
the candidate selection enormously, ReSTIR makes use of
the already computed information to further polish the re-
sult. It uses a function to combine reservoirs into one, as
shown in the pseudocode in Algorithm 2.

Algorithm 2 Combining Reservoirs

function COMBINERESERVOIRS(s,q)
Reservoir r
r.update(s.y, importances.y · s.W · s.M, s.M)
r.update(q.y, importanceq.y ·q.W ·q.M, q.M)
r.W = r.wsum

importancer.y·r.M
return r

end

With this function, the idea is that the reservoirs of the
same pixels can be reused in the next frame as can be seen
in Figure 2, while also the reservoirs of the neighboring
pixels will likely be illuminated by the same lights. Thus
the full algorithm for a single frame does the following
for all pixels with visible surface:

1. It generates N light source candidates and up-
dates the pixel’s reservoir with them, producing its chosen
light source candidate.
2. It shoots a shadow ray towards the chosen light source
candidate, updating the reservoir’s control weight W
accordingly.
3. It performs temporal reuse; the current reservoir gets
combined with the last frame’s one.
4. It performs spatial reuse, picks a number of neighboring

pixels, and combines the current reservoir with theirs.
5. It computes the final pixel color by shooting a final
shadow ray and computing radiance. Radiance is multi-
plied by control weight W and the pixel is shaded.

Figure 2: Temporal reuse in ReSTIR, with each frame,
pixel’s reservoir has evaluated more and more samples to
choose the most influential one. Spatial reuse is done sim-
ilarly.

In our implementation, light sources can be both static
and dynamic. And if a radius is set for the light sources,
they are considered as light spheres. This currently does
not affect the ReSTIR algorithm that much as parameters
of chosen sample on the candidate light source are not pre-
served in the reservoir and are chosen randomly every time
a computation is needed. This, as a preparation for area
lights, is a topic for future work.

4 Implementation

This section will describe important points for the imple-
mentation of our solution. It is done with Vulkan API in
C++ using NVIDIA nvpro-samples framework [11].

4.1 Resources

The most notable resources used by the application are
buffers for: global uniforms (matrices for the camera, ren-
dering settings), object descriptors and object data, reser-
voir structures, static and dynamic light sources (separate).

Figure 3: Weighted reservoir structure. 16B for each pixel.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics



Figure 4: Overview of application lifecycle.

The application stores the geometry of the models as a
structure with buffers and their sizes. Then this geometry
is referenced by object instances with an associated trans-
form matrix for each one.

Reservoir structures are contained within a storage
buffer. They are defined as a structure which can be seen
in Figure 3.

Reservoir stores the light source candidate as a light
source index to the light source buffers. Because the static
and dynamic lights are kept in separate buffers, the index
is recalculated as if the arrays were connected with dy-
namic light sources right after static light sources. Light
sources are stored separately as static and dynamic in the
application.

4.2 Main loop

The application has the following lifecycle: window and
Vulkan initialization, application class initialization, scene
loading, and building, creation of resources for GPU -
buffers, descriptor sets, and pipelines, main loop, and
clearing of resources as showcased in Figure 4.

The main loop updates uniform buffers and all dynamic
resources, ray traces scene, and adds GUI. The implemen-
tation allows for the result to converge, and the number of
pixel values used can be set in the GUI. Every move of the
camera resets the convergence values to avoid blur. The
same happens upon a dynamic object being hit, though
ghosting can be seen behind the object.

4.3 Vulkan API

Vulkan is an open standard for 3D graphics and computing
as of today developed by the Khronos Group. It is a low-
level cross-platform API. It grants developers more control
over the code’s functionality on the GPU thus making way
for more efficient usage of GPU resources than previously
widely used OpenGL.

Vulkan currently offers acceleration structure and
ray tracing pipeline extensions. They enable hardware-
accelerated ray tracing on NVIDIA RTX graphics cards
by supporting the use of a recursive ray tracing pipeline,

acceleration structures, and ray tracing special shaders.

Vulkan API provides two-level acceleration structures
for the ray traversal, the rest is managed hardware-wise.
Bottom-level acceleration structures (BLAS) are for
holding the actual geometry of models, and each one can
encapsulate one or more buffers. Instances of the models
and their transformation matrices are then provided to the
top-level acceleration structure (TLAS). Dynamic scenes
require TLAS to be rebuilt with rigid animations. For
this purpose, the application keeps references to all TLAS.

With raytracing extension, new types of shaders are
available. This application uses ray generation shader, ray
miss shader, and ray closest hit shader.

Ray generation shader is run for every pixel and based
on the camera setting casts a ray into the scene using trac-
eRayEXT() function provided by Vulkan API and the ex-
tensions. This shader must always be implemented for the
ray tracing pipeline to work.

Ray tracing through acceleration structure traversal is
carried out and depending on traversal results, miss or hit
shaders are run. Hit shader is then allowed to use the trac-
eRayEXT() function once more for shadow rays. The pro-
gression of ray shaders is showcased in Figure 5.

The closest hit shader acquires the hit object, the hit
primitive and the hit point information, ray direction, pixel
coordinates and transformation matrices for the instance
both to world and to local coordinates. It returns computed
color values back to the ray generation shader.

Miss shader used directly from ray generation shader
can return environment map texture values if turned on in
the application, otherwise it returns clear color back to ray
generation shader. The application then uses a second miss
shader that confirms no hit for shadow rays.

4.4 Data

Models in Wavefront .obj format can be loaded into the
application with the framework’s provided loader. Each
model stores its vertices with position, normal, color, and
texture coordinates (currently unused) and material.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics



Figure 5: Ray shader execution in Raytrace.

As for models actually used, because this work focuses
on the rendering of cities, with the goal of planning a ro-
bust full city renderer, there was a need for a format that
multiple real-world cities are available in and also that en-
capsulates more information than pure geometry. This is
fulfilled by the CityGML format standard [4]. CityGML is
an open standard used for describing 3D models of land-
scapes and cities developed by the Open Geospatial Con-
sortium. It is an implementation of Geography Markup
Language (GML), an XML encoding for geographical
data, ISO standardized.

The format describes five main LOD levels, for this
work LOD 2 was important, as it describes the exterior
of individual city buildings and their positioning inside a
city. It is also important to note that geometry represented
in this format is not always triangulated by default.
Surfaces can also be described as polygons or polygon
multisurfaces.

This implementation used an open source CityGML
model loader library for C++, libcitygml. This library pro-
vides functions to load a city encoded in such format into a
citygml::CityModel object, which contains a tree structure
of different city objects. If a tessellator is provided, objects
that contain geometric information get their geometry data
triangulated and prepared for reading. Other metadata and
labels are also saved for object nodes. Traversing child ge-
ometries and other child city objects, the whole city rep-
resentation can be traversed. During such traversal, our
application stores every object labeled as a Building as
one model together with all its child nodes’ geometries.
All other geometry types are stored as one model each,
not grouped together (this is applied mainly to a terrain
model). In the current implementation, for every model,
one instance is created, later processed into one BLAS for
ray-tracing. citygml::CityModel object’s bounding box is
used to center the geometry in the scene.

The city models sadly do not have to contain real-world
latitude and longitude, although most sources do pro-
vide model bounds externally as model information upon
download, together with scale ratio.

4.5 Light sources

For the test scenes, positions of real-world light sources
were extracted as XML file from OpenStreeMap, an open,
community-maintained map database. Light sources ob-
tained are mainly of types street lamp, lantern and flood-
light. All nodes include latitude and longitude informa-
tion, but almost none have elevation data. For this work,
a custom tool was used that, through OpenElevation API
requests, fills in all nodes’ elevation data into the XML
file and is then ready for loading into the application with
xercerc XML parser for C++. For positioning the light
sources into the scene, their latitude and longitude is re-
computed againts the centered terrain and city model.

With the current implementation, all loaded light
sources are assigned the same 3D model representation,
a sample old town lamp. The visualization model instance
of the light source is masked in the shadow ray cast to not
obscure the shadow ray into the light source but to still be
visible. The light source can either be a point light or a
spherical light of a common radius chosen by the user in
the GUI during the application run.

Dynamic light sources are also supported, currently for
testing purposes only, in a form of light spheres with gen-
erated trajectories. Their positions are reuploaded onto the
GPU every frame, if turned on. This setting also results in
TLAS rebuilding.

5 Results

Testing was done on a desktop computer with NVidia
GeForce RTX 3060 16GB graphics card, AMD Ryzen 5
5600G CPU, 32 GB of memory, and Windows 10 OS.
For comparison with this work’s efforts, a ray-tracer sam-
pling all light sources in every frame was also added as
a reference. We will showcase results in two parts of
cities: Prague and Rotterdam. We used FullHD resolution
for rendering, meaning there are 2M temporal reservoirs
maintained and at most 6M rays traced per frame (visible
point, candidate testing, final shading).

In both cases, utilizing 32 candidates selection, tempo-
ral reuse, and convergence of the last 30 pixel samples, the
results are still noisy, as expected. The result also seems
to be biased, darker than the ground truth when all light
sources are properly sampled, which is something the orig-
inal ReSTIR paper also dives into. This can be seen in
comparison with reference in Figure 6.

The candidates’ usage in itself already makes a huge
impact on the resulting image every time. The original
paper states 32 candidates as the optimal number, and a
similar outcome can be deduced out of this work’s testing,

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics



Figure 6: Comparison of ReSTIR implementation render
frame on the left against reference on the right, in a scene
of Rotterdam city. The result is biased, darker than the
ground truth.

where using more candidates than 32 did not improve the
result as much; rather, it took away from the performance
a bit, which seems to also be the case here.

The reference raytracer easily falls down to 4-5 FPS, in
case of a test (not included here as the reference was so un-
stable) with 2000 light sources even crashing. Meanwhile,
ReSTIR running on 40 candidate samples and 30 neighbor
spatial samples runs with stability in both our cases above
120 FPS.

Performance of ReSTIR is affected by ray traversal time
(geometry and acceleration structure dependent), the num-
ber of light source candidates used, and how many neigh-
bor reservoirs are reused. Following measurements are
done from a single view in the test scenes.

5.1 Prague scene

The first testing scene used for this work was obtained
from Prague’s GeoPortal website. It consists of the model
of part of Prague’s buildings with terrain [13], and its light
sources from OpenStreetMap, as can be seen in Figure
10a. This model together consists of over 300,000 trian-
gles and is illuminated by 337 lights. A rendered frame
of this scene using our implementation can be seen in Fig-
ure 7.

Figure 7: City of Prague rendered with the ReSTIR imple-
mentation, 337 light sources.

5.2 Rotterdam scene

The second testing scene was chosen to be from Rotter-
dam. The data is available through an online visualiza-
tion application by selection and filtering of wanted con-
tent [14]. The model also consists of over 300,000 tri-
angles, and it is illuminated by 913 lights. A rendered
frame of this scene using our implementation can be seen
in Figure 8. Furthermore, a visualization showcasing the
outcoming computed radiance can be found in Figure 11.

Figure 8: City of Rotterdam rendered with the ReSTIR
implementation, 913 light sources.

5.3 Measurements

Table 1: Performance on two testing scenes and their
visual quality compared to the reference depending on
the number of initial light source candidates for weighted
reservoirs. Temporal and spatial reuse (5 neighbors). Per-
formance in FPS/ms. For comparison, Prague’s reference
was around 7 FPS for Prague and 2 FPS for Rotterdam.

Prague Rotterdam
#triangles 304k #triangles 311k

#Cand. perf RMSE perf RMSE

1 279/3.58 10.68 371/2.69 23.32
2 278/3.60 9.60 371/2.70 21.53
4 275/3.64 8.35 369/2.71 19.33
8 270/3.70 7.14 362/2.76 16.76
16 254/3.94 6.17 334/2.99 14.05
24 229/4.37 5.84 304/3.29 12.57
32 201/4.98 5.69 271/3.69 11.62
40 176/5.68 5.59 245/4.08 10.96

5.4 Dynamic light sources

Dynamic light sources were tested in a simple scene. Their
paths are randomly generated so far, for testing purposes
only. This functionality is to be used when car traffic gen-
eration is done. These tests brought similar results as the
static light sources tests, as Figure 9 shows.

However with rendering cities, it could be assumed that
no objects would be moving as fast or be viewed as closely
as in this simple testing scene to cause as much noise. Per-
formance testing dynamic light sources found that TLAS

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics



Figure 9: 50 dynamic light sources: ReSTIR 32 candidates
left, reference right.

rebuild is probably the bottleneck there; rendering itself is
not affected performance-wise.

5.5 Discussion

The performance of the implementation turned out to be
quite view-dependent, future work should focus on stabi-
lizing FPS throughout the model, probably by organizing
the acceleration structures better. Also, the darkness of the
images should be taken into consideration, especially their
unpredictability. Both these factors could be seen in the
results - while the Prague scene worked with fewer light
sources, it performed worse than the Rotterdam scene with
more than twice the light sources, but around 100 more
FPS. On the other hand, the Rotterdam scene turned out
much noisier and darker than the Prague scene. Moreover,
adding in dynamic objects further darkens the image. A lot
of the noise also comes from the usage of spherical lights
instead of point lights. Preserving parameters from the
sample selection on spherical/future area lights will prob-
ably be needed for better results.

6 Limitations and future work

The current implementation has many flaws - inefficient
convergence computation, shader algorithms not modular-
ized, and the test scene adjusted for only a few models.
Also, the whole nvpro-samples framework is not needed
for one standalone application, but it was easier to use
for this initial testing. The application is currently being
rewritten with the Daxa Vulkan framework with the goal of
abstraction, modularization, and generalization. We want
to allow seamless switching of city models and resources
during the application run and also offer more control over
the variant of the rendering algorithm used, additionally
with optional visualizations.

Apart from that, for our future work, we see as our goal
a full application, a general city renderer capable of han-
dling big scenes with many light sources of various kinds.
We also want to focus on the visualization of light pol-
lution. ReSTIR could be modified and extended towards
the generalized path tracer variant. Effects such as smoke,

fog, clouds, and rain could also be added as participating
media; they can also be considered with ray-tracing. The
existing method that works with it is ReGIR, where reser-
voirs are grid-based.

The addition of generated windows [3] to building walls
could also be possible because during the model load, if
the model is of the CityGML format, the model parts la-
beling could determine where to generate them. The same
goes for the placing of car traffic - if streets are marked as
such, or optionally, roads could be exported from Open-
StreetMaps.

7 Conclusion

For this work, we have introduced existing methods used
to solve the many-lights rendering problem, as we aim
to render city sceneries during nighttime, illuminated by
street lamps, traffic, building windows, and various other
light sources. We then focused on the ReSTIR method,
explaining its core principles.

We went over the implementation’s architecture, func-
tionality, data loading, and scene building. Rendering
techniques and details were laid out. Limitations of the
current implementation were also highlighted.

The implementation is now able to load given city
scenes, together with lights, and render them using the Re-
STIR method. Light sources are point lights by default but
can also work as spherical light sources. The implemen-
tation is also capable of rendering dynamic lights. Our
work tested the method and let us decide to continue on
this project, building a more complex and general renderer.

Acknowledgments

This work was supported by the Grant Agency
of the Czech Technical University in Prague, No
SGS25/150/OHK3/3T/13.

References

[1] B. Bitterli, C. Wyman, M. Pharr, P. Shirley,
A. Lefohn, and W. Jarosz. Spatiotemporal reservoir
resampling for real-time ray tracing with dynamic di-
rect lighting. ACM Transactions on Graphics (TOG),
39(4), 2020.

[2] J. Boksansky, P. Jukarainen, Ch. Wyman, and
NVidia. Rendering many lights with grid-based
reservoirs. Apress, 2021. Chapter 23.

[3] J. Chandler, L. Yang, and L. Ren. Procedural window
lighting effects for real-time city rendering. Proceed-
ings of the 19th Symposium on Interactive 3D Graph-
ics and Games, pages 93–99, 2015.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics



(a) Model of part of Prague, with light source positions visualized. (b) Part of Prague with inserted lamps.

Figure 10: Testing scene of Prague showcase. 300,000 triangles, 337 light sources.

(a) Rotterdam scene from above render frame. (b) Rotterdam scene from above outgoing radiance visualization.

Figure 11: Rotterdam scene - further visualization. 300,000 triangles, 913 light sources.

[4] Open Geospatial Consortium. CityGML Stan-
dard, 2019. https://www.ogc.org/
publications/standard/citygml/.

[5] M. Conte. Real-time rendering of cities at night.
Master’s thesis, University of Montreal, 2019.

[6] Esri, IPR Praha, and ČÚZK. 3d model of prague, on-
line application. https://app.iprpraha.cz/
apl/app/model3d/. Accessed: 2025-03-06.

[7] M. Hašan, F. Pellacini, and K. Bala. Matrix row-
column sampling for the many-light problem. SIG-
GRAPH, 2007.

[8] H.W. Jensen, S. Premoze, P. Shirley, W. Thompson,
J. Ferwerda, and M. Stark. Night rendering. Tech-
nical Report UUCS-00-016, Computer Science De-
partment, University of Utah, 2000.

[9] D. Lin, M. Kettunen, B. Bitterli, J. Pantaleoni,
C. Yuksel, and C. Wyman. Generalized resampled
importance sampling: Foundations of restir. ACM
Transactions on Graphics (SIGGRAPH 2022), 2022.

[10] P. Moreau, M. Pharr, and P. Clarberg. Dynamic
many-light sampling for real-time ray tracing. High

Performance Graphics (Short Papers), pages 21–26,
2019.

[11] NVIDIA. Nvidia designworks samples. https:
//github.com/nvpro-samples. Accessed:
2025-04-01.

[12] Y. Ouyang, S. Liu, M. Kettunen, M. Pharr, and
J. Pantaleoni. Restir gi: Path resampling for real-time
path tracing. Computer Graphics Forum, 40(8):17–
29, 2021.

[13] Geoportal Praha. 3d buildings of
prague, open data. https://
geoportalpraha.cz/data-a-sluzby/
7e6316e95cfe4f36ae06bbfb687bf34b.
Accessed: 2025-03-06.

[14] Gemeente Rotterdam. 3d model of rotterdam -
buildings and terrain, open data. https://www.
3drotterdam.nl/. Accessed: 2025-03-06.

[15] B. Walter, S. Fernandez, A. Arbree, K. Bala,
M. Donikian, and D. P. Greenberg. Lightcuts:
A scalable approach to illumination. SIGGRAPH,
24(3):1098–1107, 2005.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics


