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Abstract

Methods based on radiance fields have continually pushed
the boundaries of novel view synthesis since their first ap-
pearance in 2020. The capabilities of radiance fields have
since been extended from pure view synthesis to high qual-
ity surface reconstruction. However, these surface recon-
struction methods generally display poor performance in
scenes with transparent objects, producing holes and ar-
tifacts in the resulting geometry. Surface reconstruction
fails even for radiance fields, which are able to represent
the transparent objects accurately in view synthesis. Our
work investigates the causes of such failure cases in scenes
represented by 3D Gaussians and proposes an improve-
ment to the mesh extraction process. We build upon the
method of Gaussian Opacity Fields and utilize it for both
scene optimization and geometry extraction. By supply-
ing their geometry extraction pipeline with Gaussians of
multiple training steps reached during scene optimization,
we achieve a significant uplift in extracted mesh quality
for transparent objects. In order to avoid the global recon-
struction quality loss incurred by this approach, we seg-
ment transparent objects in the scene and selectively apply
our pipeline modifications only to those objects.

Keywords: 3D Gaussian, radiance field, transparent ob-
ject, surface reconstruction, mesh extraction

1 Introduction

Recent advancements in view synthesis based on radiance
fields have facilitated new approaches to 3D mesh recon-
struction from multi-view images. Among these, meth-
ods leveraging Neural Radiance Fields (NeRFs) [26] have
demonstrated significant progress [10, 36, 24].

The field of view synthesis has since seen the rise of
radiance fields with explicit Gaussian point cloud repre-
sentations after the release of Gaussian Splatting [18]. GS
and its successors preserve and often exceed the rendering
quality of NeRFs, while offering real-time rendering and
optimization which is orders of magnitude faster. Several
Gaussian-based techniques [13, 15, 43, 5] have matched
the state-of-the-art view synthesis and surface reconstruc-
tion results achieved by NeRFs.

However, both NeRF and GS-based approaches strug-
gle to reconstruct surfaces of transparent objects. This is
despite their ability to represent transparent objects con-
vincingly in view synthesis, suggesting that surface recon-
struction failures stem from a limitation in the geometry
extraction process rather than a complete inability of radi-
ance fields to model transparent materials.

The challenge of accurate 3D reconstruction for trans-
parent objects extends beyond methods based on radiance
fields. Conventional approaches, such as LiDAR scanning
and photogrammetry, also struggle with transparent mate-
rials due to their reliance on depth estimation techniques
that assume consistent surface reflections [17].

Extending the capabilities of Gaussian-based radiance
fields further to allow surface reconstruction of transpar-
ent objects is significant to the broader field of surface re-
construction. Even the more constrained problem of depth
estimation for transparent materials has major impact for
robotic applications such as object grasping [16].

We propose a simple approach for improving mesh
quality and demonstrate our improvements in a qualitative
evaluation, comparing the mesh outputs of our pipeline to
the unmodified GOF.

2 Related Work

This chapter begins with an overview of early radiance
fields methods invented for view synthesis. It summarizes
subsequent developments which established the research
field. The following subchapter explains how the capabil-
ities of radiance fields were extended from pure view syn-
thesis to surface reconstruction, and what improvements
have been proposed since then. The last subchapter dis-
cusses existing techniques for segmentation of radiance
fields.

2.1 Novel View Synthesis

Neural Radiance Fields (NeRF) [26], in which the au-
thors utilized a multilayered perceptron (MLP) to learn a
3D scene by optimizing photometric loss through volume
rendering, emerged as a critical innovation in the area of
novel view synthesis.
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The original NeRF implementation was computation-
ally demanding for both training and rendering. Hence
a major line of research focused on improving viewing
performance by baking the NeRF into different represen-
tations after training [42, 14]. Poor training performance
was addressed by later works [12, 32], which showed that
the MLP in NeRF was being used as an inefficient volu-
metric data structure and could be replaced by a voxel grid.
While voxel grids do achieve significantly faster inference
than NeRF, they consume large amounts of memory and
struggle to represent fine details due to their limited res-
olution. Nonetheless, their emergence sparked a broader
search for more efficient and expressive data structures for
radiance field representation. Later approaches attempted
to replace the MLP with a wide variety of data structures,
even large amounts of smaller MLPs [31], and 4D ten-
sors [4]. Meanwhile, a major breakthrough in NeRF per-
formance was achieved by multiscale hash encoding in In-
stantNGP [27], yet the search for an efficient data structure
continued and trended towards increasingly more explicit
representations. Such representations include neural point
clouds [40], and finally sets of Gaussians.

3D Gaussian Splatting [18], unlike NeRF, does not
rely on a slow ray marching approach for synthesizing im-
ages. 3D Gaussians are instead projected into 2D, sorted
by distance from the camera, and overlaid to produce
images in real-time. Due to their simple representation,
Gaussian point clouds are easy to integrate into common
3D software. Their practical utility and superior perfor-
mance made Gaussian representations the focus of sub-
sequent research. However, research also continues with
implicit representations. Numerous findings made with
either representation have since been implemented using
the other, making both lines of work complementary and
mutually relevant.

2.2 Radiance Fields Surface Reconstruction

NeRF allows for depth maps to be obtained for free as
a byproduct of rendering even in the original implementa-
tion [26]. The problem of surface reconstruction can there-
fore be reduced to mesh extraction from depth maps by
applying a TSDF mesh extraction algorithm [28]. How-
ever, later methods commonly use signed distance func-
tions and other implicit abstractions to represent the sur-
face prior to mesh extraction in order to mitigate sur-
face artifacts [14, 29, 36, 41, 30]. Despite some NeRF-
based surface reconstruction methods achieving impres-
sively high detail [24], they commonly require upwards
of 12 hours of training per scene on expensive hardware.

3D Gaussian Radiance Fields make geometry extrac-
tion more challenging due to their explicit nature and un-
clear surface boundaries. SuGaR [13] mitigates the prob-
lem of unclear surface boundary by introducing a regular-
ization term into the training pipeline. The regularization
term constrains Gaussians to form more consistent sur-
faces, additionally allowing for estimation of a normal as

the shortest axis for any given Gaussian. The normal infor-
mation enables the use of Poisson mesh extraction, yield-
ing meshes of higher quality. DN-Splatter [34] extends
their approach further by integrating depth and normal
cues into the optimization process, improving alignment
with true scene geometry and enhancing surface smooth-
ness.

The key differences in 3DGS-based surface reconstruc-
tion methods often lie in their approaches to estimation
of normal data from Gaussians. PGSR [5] uses multi-
ple regularizers and a mix of depth-estimation techniques
to achieve view-consistent depth and normal estimations.
Instead of approximating normals from 3D Gaussians,
2DGS [15] chooses to represent the scene with 2D Gaus-
sians and obtain normals directly. The surface can then
be approximated by optimizing a set of small 2D ori-
ented disks to lie on the surface while matching its nor-
mals. Gaussian Opacity Fields (GOF) [43] proposes a di-
rect level-set extraction approach, eliminating the need for
Poisson reconstruction altogether and enabling more ef-
ficient surface reconstruction in unbounded scenes. Nu-
merous other methods aim to guide the mesh extraction
process using priors, more complex regularizers, and mul-
timodal data [37, 35, 22].

Surface reconstruction of transparent objects is a
largely underexplored problem in context of radiance
fields. Several methods have attempted to leverage NeRFs
[16, 19, 9, 11] and Gaussian Splatting [1, 20] for depth
estimation and downstream tasks such as robotic grasp-
ing of transparent objects. However, these approaches are
limited to producing imprecise depth maps and are not ca-
pable of generating explicit surface meshes.

True surface reconstruction was attempted by few meth-
ods, each of which introduces specific limitations. NeRRF
[7] requires object silhouette as an additional input. Nu-
NeRF [33] is computationally demanding. αSurf [38], de-
spite its very impressive results, builds on a voxel-based
representation [12] and thus inherits its associated limita-
tions in scene resolution and memory efficiency. To the
best of our knowledge, the only Gaussian-based method
that has demonstrated success in reconstructing transpar-
ent surfaces under unconstrained conditions is Car-GS
[23], which focuses specifically on car models. As of
the time of writing, the implementation of Car-GS has not
been publicly released.

2.3 3D Segmentation of Radiance Fields

Most existing radiance field segmentation methods work
in image space by utilizing the SAM segmentation model
[21] to obtain semantic maps from ground truth images.
The semantic maps are then extrapolated into 3D in vari-
ous ways. Certain Gaussian-based methods use the maps
to train additional 3D Gaussian features [3]. Runtime
segmentation can be then guided by user input in the
form of one-shot click prompts [8, 3], or open-vocabulary
prompts [25, 6, 39].
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(a) 30k, SDF=0.5 (b) 30k, SDF=0.1 (c) Ours

Figure 1: Visual comparison of transparent object surface reconstruction on the ”Counter” scene of mip-NeRF 360 dataset.
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3 Method

In this section, we examine the GOF mesh extraction
method. We observe its failure on transparent objects,
make an argument about the cause, and perform experi-
ments to support our claims. Based on the results of our
experiments, we devise a modification to the mesh extrac-
tion pipeline, which extracts the surfaces of transparent
objects more accurately.

3.1 Initial Findings

To assess the limitations of existing approaches in mesh
reconstruction for transparent objects, we conduct exper-
iments using Gaussian Opacity Fields (GOF) [43]. This
method was selected as our baseline due to its high qual-
ity, performance in training 3D Gaussian scene represen-
tations, and its robust mesh extraction pipeline.

Firstly, we replicate the mesh extraction experiment
conducted in the original GOF study, using the mip-NeRF
360 dataset [2]. Our experimental results confirm that
GOF produces high quality meshes of the scenes, but fails
to reconstruct transparent objects (see Fig. 1a). The is-
sue persists when using a relaxed signed distance function
(SDF) level of 0.1 (see Fig. 1b).

The reconstruction failure stems from the way in which
transparent materials are represented in a Gaussian radi-
ance field. During training, 3D Gaussians change to match
ground truth image observations. Because transparent ob-
jects produce low contribution to photometric loss, they
are modeled by Gaussians with low opacities. Note that
this trait was inherited by most GS-based methods [18].
The behavior is expected and poses no issue in view syn-
thesis. However, the assumption that visual opacity can
be used as a measure for physical density is incorrect for
surface reconstruction of transparent objects. We argue
that this is the main cause of reconstruction failures in cur-
rently available state of the art methods for general surface
reconstruction [43, 15, 5]. Novel works on surface recon-
struction of transparent objects align with and support our
reasoning [38, 23].

3.2 Reconstructing Transparent Surfaces

Instead of making changes to the training pipeline, we at-
tempt to improve surface reconstruction by modifying the
Gaussian point cloud after training. Increasing the opac-
ity of 3D Gaussians before surface reconstruction is in-
sufficient for substantial improvements in mesh quality
(see Fig. 7d). A closer inspection of the trained Gaus-
sian point cloud reveals that the Gaussians of transparent
objects are generated too sparsely to allow for meaning-
ful surface estimation (see Fig. 2a), likely due to the low
contribution of transparent objects to photometric loss, as
explained earlier.

We obtain a denser point cloud by sampling the Gaus-
sians from multiple Gaussian Radiance Fields trained on

(a) 30k (b) 1k2k3k4k

Figure 2: Point cloud of Gaussian origins

Figure 3: Surface reconstruction from merged Gaussians
of training iterations 1k2k3k4k.

the same set of images. Instead of fully training the same
scene with different seeds and sampling across training
runs, we sample 3D Gaussians across iterations of the
same training run in order not to increase training time.

The process of training a Gaussian scene representation
takes 30,000 iterations, in which Gaussians randomly shift
their positions by small increments until they converge.
Our assumption is that after a sufficiently high number of
steps, Gaussians lie in close proximity to the surface and
can be sampled to approximate it. Since the features of
3D Gaussians need to be mature enough to approximate
the surface reliably, yet are most volatile in early train-
ing stages, we choose iterations 1k, 2k, 3k, and 4k for
sampling. We merge the Gaussians of training iterations
1k, 2k, 3k, and 4k into a single point cloud, and reexam-
ine the positions of their origins (see Fig. 2b). The merged
point cloud is dense even in areas, which are sparse in the
completely trained representation.

With this simple modification to the radiance field, the
extraction pipeline yields greatly superior mesh quality for
transparent objects (see Fig. 3). However, overlaying mul-
tiple training steps and using low training iterations de-
creases the mesh quality for other objects in the scene.
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Figure 4: An overview of our surface reconstruction pipeline.

3.3 Complete Method

In order to avoid the incurred reconstruction errors, we
segment the scene and extract Gaussians belonging to
transparent objects. To perform the segmentation, we use
SAGA [3], a SAM-based 3D Gaussian segmentation tool
to segment transparent objects. The method requires the
user to manually click once on each transparent object
which is to be segmented.

Figure 5: Segmentation process using SAGA.

(a) GOF default settings (b) Ours

Figure 6: Cropped regions of extracted meshes.

To obtain the final Gaussian representation ready for
mesh extraction, we sample the training process at itera-
tions 1k, 2k, 3k, 4k, 30k. We then segment the Gaussians
of transparent objects (see Fig. 5) from all of the selected
training steps, increase their opacities to 1, merge them
together, and add the non-transparent background from it-
eration 30k as shown in Fig.4. The resulting mesh quality
is greatly improved (see Fig. 6).

We evaluate our results qualitatively on the mip-NeRF
360 ”Counter” scene. Our experiments were carried out
on an NVIDIA A100 80GB VRAM GPU. SAGA models
were trained for 5k iterations with default settings. Mesh
cutouts shown in Fig. 1 and Fig. 6 were obtained by re-
moving all vertices outside manually established bounding
boxes which span areas of interest.

4 Limitations & Future Work

One major limitation of our approach is the amount of nec-
essary user interaction. Hence a possible improvement to
our method would be to use an open-vocabulary segmenta-
tion approach and use predefined prompts for transparent
objects.

Another limitation is performance. Despite the segmen-
tation happening in under 10 milliseconds, SAGA requires
upwards of an hour of total training time for all sampled
scenes to learn semantic Gaussian features used when seg-
menting user prompts.

Lastly, our fixed choice of iterations which are to be
segmented is merely a proof of concept. It can poten-
tially be extended to an automated system, which identi-
fies sparsely populated areas and samples Gaussians adap-
tively across all training iterations.

5 Conclusions

We inspected Gaussian Opacity Fields [43], an exist-
ing method of high quality surface reconstruction for 3D
Gaussian radiance fields. We made the argument that erro-
neously representing geometric density with visual opac-
ity is the primary cause of its inability to capture surfaces
of transparent objects. We supported this claim with an ex-
periment, in which we improved the extracted mesh qual-
ity of transparent objects by densifying their Gaussian rep-
resentations and increasing their opacity. Additionally, we
showed that such improvements can be obtained by sim-
ply sampling the 3D Gaussians across multiple training
iterations of the same training run, rather than training
the scene multiple times with different seeds. Lastly, we
demonstrated the ability of an existing 3D Gaussian seg-
mentation technique, SAGA [3], to obtain 3D Gaussians of
transparent objects, which we leveraged to perform mesh
extraction of higher quality for the entire scene.
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(a) GT (b) 30k
SDF=0.5

(c) 30k
SDF=0.1

(d) 30k
alpha=1, SDF=0.5

(e) Ours

Figure 7: Comparison of GT and different training configurations.
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Giovanni Maria Farinella, and Tal Hassner, editors,
Computer Vision – ECCV 2022, pages 333–350,
Cham, 2022. Springer Nature Switzerland.

[5] Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Wei-
jian Xie, Shangjin Zhai, Nan Wang, Haomin Liu,
Hujun Bao, and Guofeng Zhang. Pgsr: Planar-based
gaussian splatting for efficient and high-fidelity sur-
face reconstruction. IEEE Transactions on Visualiza-
tion and Computer Graphics, page 1–12, 2024.

[6] Runnan Chen, Xiangyu Sun, Zhaoqing Wang,
Youquan Liu, Jiepeng Wang, Lingdong Kong,
Jiankang Deng, Mingming Gong, Liang Pan, Wen-
ping Wang, and Tongliang Liu. Ovgaussian: Gener-
alizable 3d gaussian segmentation with open vocab-
ularies, 2024.

[7] Xiaoxue Chen, Junchen Liu, Hao Zhao, Guyue
Zhou, and Ya-Qin Zhang. Nerrf: 3d reconstruction
and view synthesis for transparent and specular ob-
jects with neural refractive-reflective fields, 2023.

[8] Seokhun Choi, Hyeonseop Song, Jaechul Kim, Tae-
hyeong Kim, and Hoseok Do. Click-gaussian: In-
teractive segmentation to any 3d gaussians. In
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