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Abstract

Methods based on radiance fields have continually pushed
the boundaries of novel view synthesis since their first ap-
pearance in 2020. The capabilities of radiance fields have
since been extended from pure view synthesis to high qual-
ity surface reconstruction. However, these surface recon-
struction methods generally display poor performance in
scenes with transparent objects, producing holes and ar-
tifacts in the resulting geometry. Surface reconstruction
fails even for radiance fields, which are able to represent
the transparent objects accurately in view synthesis. Our
work investigates the causes of such failure cases in scenes
represented by 3D Gaussians and proposes an improve-
ment to the mesh extraction process. We build upon the
method of Gaussian Opacity Fields and utilize it for both
scene optimization and geometry extraction. By supply-
ing their geometry extraction pipeline with Gaussians of
multiple training steps reached during scene optimization,
we achieve a significant uplift in extracted mesh quality
for transparent objects. In order to avoid the global recon-
struction quality loss incurred by this approach, we seg-
ment transparent objects in the scene and selectively apply
our pipeline modifications only to those objects.
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ject, surface reconstruction, mesh extraction

1 Introduction

Recent advancements in view synthesis based on radiance
fields have facilitated new approaches to 3D mesh recon-
struction from multi-view images. Among these, meth-
ods leveraging Neural Radiance Fields (NeRFs) [26] have
demonstrated significant progress [10, 36, 24].

The field of view synthesis has since seen the rise of
radiance fields with explicit Gaussian point cloud repre-
sentations after the release of Gaussian Splatting [18]. GS
and its successors preserve and often exceed the rendering
quality of NeRFs, while offering real-time rendering and
optimization which is orders of magnitude faster. Several
Gaussian-based techniques [13, 15, 43, 5] have matched
the state-of-the-art view synthesis and surface reconstruc-
tion results achieved by NeRFs.

However, both NeRF and GS-based approaches strug-
gle to reconstruct surfaces of transparent objects. This is
despite their ability to represent transparent objects con-
vincingly in view synthesis, suggesting that surface recon-
struction failures stem from a limitation in the geometry
extraction process rather than a complete inability of radi-
ance fields to model transparent materials.

The challenge of accurate 3D reconstruction for trans-
parent objects extends beyond methods based on radiance
fields. Conventional approaches, such as LiDAR scanning
and photogrammetry, also struggle with transparent mate-
rials due to their reliance on depth estimation techniques
that assume consistent surface reflections [17].

Extending the capabilities of Gaussian-based radiance
fields further to allow surface reconstruction of transpar-
ent objects is significant to the broader field of surface re-
construction. Even the more constrained problem of depth
estimation for transparent materials has major impact for
robotic applications such as object grasping [16].

We propose a simple approach for improving mesh
quality and demonstrate our improvements in a qualitative
evaluation, comparing the mesh outputs of our pipeline to
the unmodified GOF.

2 Related Work

This chapter begins with an overview of early radiance
fields methods invented for view synthesis. It summarizes
subsequent developments which established the research
field. The following subchapter explains how the capabil-
ities of radiance fields were extended from pure view syn-
thesis to surface reconstruction, and what improvements
have been proposed since then. The last subchapter dis-
cusses existing techniques for segmentation of radiance
fields.

2.1 Novel View Synthesis

Neural Radiance Fields (NeRF) [26], in which the au-
thors utilized a multilayered perceptron (MLP) to learn a
3D scene by optimizing photometric loss through volume
rendering, emerged as a critical innovation in the area of
novel view synthesis.
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The original NeRF implementation was computation-
ally demanding for both training and rendering. Hence
a major line of research focused on improving viewing
performance by baking the NeRF into different represen-
tations after training [42, 14]. Poor training performance
was addressed by later works [12, 32], which showed that
the MLP in NeRF was being used as an inefficient volu-
metric data structure and could be replaced by a voxel grid.
While voxel grids do achieve significantly faster inference
than NeRF, they consume large amounts of memory and
struggle to represent fine details due to their limited res-
olution. Nonetheless, their emergence sparked a broader
search for more efficient and expressive data structures for
radiance field representation. Later approaches attempted
to replace the MLP with a wide variety of data structures,
even large amounts of smaller MLPs [31], and 4D ten-
sors [4]. Meanwhile, a major breakthrough in NeRF per-
formance was achieved by multiscale hash encoding in In-
stantNGP [27], yet the search for an efficient data structure
continued and trended towards increasingly more explicit
representations. Such representations include neural point
clouds [40], and finally sets of Gaussians.

3D Gaussian Splatting [18], unlike NeRF, does not
rely on a slow ray marching approach for synthesizing im-
ages. 3D Gaussians are instead projected into 2D, sorted
by distance from the camera, and overlaid to produce
images in real-time. Due to their simple representation,
Gaussian point clouds are easy to integrate into common
3D software. Their practical utility and superior perfor-
mance made Gaussian representations the focus of sub-
sequent research. However, research also continues with
implicit representations. Numerous findings made with
either representation have since been implemented using
the other, making both lines of work complementary and
mutually relevant.

2.2 Radiance Fields Surface Reconstruction

NeRF allows for depth maps to be obtained for free as
a byproduct of rendering even in the original implementa-
tion [26]. The problem of surface reconstruction can there-
fore be reduced to mesh extraction from depth maps by
applying a TSDF mesh extraction algorithm [28]. How-
ever, later methods commonly use signed distance func-
tions and other implicit abstractions to represent the sur-
face prior to mesh extraction in order to mitigate sur-
face artifacts [14, 29, 36, 41, 30]. Despite some NeRF-
based surface reconstruction methods achieving impres-
sively high detail [24], they commonly require upwards
of 12 hours of training per scene on expensive hardware.

3D Gaussian Radiance Fields make geometry extrac-
tion more challenging due to their explicit nature and un-
clear surface boundaries. SuGaR [13] mitigates the prob-
lem of unclear surface boundary by introducing a regular-
ization term into the training pipeline. The regularization
term constrains Gaussians to form more consistent sur-
faces, additionally allowing for estimation of a normal as

the shortest axis for any given Gaussian. The normal infor-
mation enables the use of Poisson mesh extraction, yield-
ing meshes of higher quality. DN-Splatter [34] extends
their approach further by integrating depth and normal
cues into the optimization process, improving alignment
with true scene geometry and enhancing surface smooth-
ness.

The key differences in 3DGS-based surface reconstruc-
tion methods often lie in their approaches to estimation
of normal data from Gaussians. PGSR [5] uses multi-
ple regularizers and a mix of depth-estimation techniques
to achieve view-consistent depth and normal estimations.
Instead of approximating normals from 3D Gaussians,
2DGS [15] chooses to represent the scene with 2D Gaus-
sians and obtain normals directly. The surface can then
be approximated by optimizing a set of small 2D ori-
ented disks to lie on the surface while matching its nor-
mals. Gaussian Opacity Fields (GOF) [43] proposes a di-
rect level-set extraction approach, eliminating the need for
Poisson reconstruction altogether and enabling more ef-
ficient surface reconstruction in unbounded scenes. Nu-
merous other methods aim to guide the mesh extraction
process using priors, more complex regularizers, and mul-
timodal data [37, 35, 22].

Surface reconstruction of transparent objects is a
largely underexplored problem in context of radiance
fields. Several methods have attempted to leverage NeRFs
[16, 19, 9, 11] and Gaussian Splatting [1, 20] for depth
estimation and downstream tasks such as robotic grasp-
ing of transparent objects. However, these approaches are
limited to producing imprecise depth maps and are not ca-
pable of generating explicit surface meshes.

True surface reconstruction was attempted by few meth-
ods, each of which introduces specific limitations. NeRRF
[7] requires object silhouette as an additional input. Nu-
NeRF [33] is computationally demanding. αSurf [38], de-
spite its very impressive results, builds on a voxel-based
representation [12] and thus inherits its associated limita-
tions in scene resolution and memory efficiency. To the
best of our knowledge, the only Gaussian-based method
that has demonstrated success in reconstructing transpar-
ent surfaces under unconstrained conditions is Car-GS
[23], which focuses specifically on car models. As of
the time of writing, the implementation of Car-GS has not
been publicly released.

2.3 3D Segmentation of Radiance Fields

Most existing radiance field segmentation methods work
in image space by utilizing the SAM segmentation model
[21] to obtain semantic maps from ground truth images.
The semantic maps are then extrapolated into 3D in vari-
ous ways. Certain Gaussian-based methods use the maps
to train additional 3D Gaussian features [3]. Runtime
segmentation can be then guided by user input in the
form of one-shot click prompts [8, 3], or open-vocabulary
prompts [25, 6, 39].
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