
Resolution Matched Virtual Shadow Maps

Matěj Sakmary*

Supervised by: Jiřı́ Bittner†

Department of Computer Graphics and Interaction
Czech Technical University in Prague

Prague / Czech Republic

Abstract

In this article, we present Resolution Matched Vir-
tual Shadow Maps (RMVSMs), a method for rendering
shadow maps with greatly improved quality and memory
efficiency compared to traditional methods. We separate
logical address space from its physical backing by split-
ting each shadow map cascade into a set of virtual pages.
This achieves the appearance of a large contiguous mem-
ory without the need to reserve backing physical memory.
For each frame, we find the set of visible pages by analyz-
ing the depth buffer. Each visible page is assigned phys-
ical memory allocated from a designated memory pool.
To efficiently fill visible pages with shadow map infor-
mation, we utilize granular culling of the scene geometry.
We show that our implementation is well suited for mul-
tiple light sources of various types, including directional
lights, point lights, and spotlights. Further, we show that
this technique scales to an arbitrary number of cascades as
only a fraction of virtual pages are visible and need to be
backed each frame. We can thus achieve any desired texel-
to-pixel density at any distance with few wasted shadow
texels.

Keywords: Shadows, Shadow map, Shadow Mapping,
Virtual, Virtual textures, Memory Paging, Meshlets, Mesh
Shading, Sparse, Culling, Real Time Shadows, Point Light
Shadows

1 Introduction

Shadows are one of the most important aspects of a three-
dimensional scene. By providing visual queues on shapes
and the relative positions of objects, they define how the
scene is perceived and interpreted. Calculating and stor-
ing visibility, which is at the core of each shadowing solu-
tion, remains a challenging problem. Even though recent
advancements in hardware technology make ray tracing a
promising direction, shadow mapping remains a standard
and widely used technique for solving visibility queries.

Despite that, current shadow mapping techniques still
suffer from artifacts caused by insufficient shadow map

*matej.sakmary@gmail.com
†bittner@fel.cvut.cz

Figure 1: On the left undesirable effects caused by insuffi-
cient shadow map resolution which results in blocky look-
ing shadows. On the right shadows produced by RMVSM.

resolution. Increasing resolution to alleviate these issues
quickly becomes impractical due to memory consumption
and hardware limitations. These issues are further accen-
tuated if multiple light sources are considered, each requir-
ing one or more separate shadow maps. Even when we
ignore the memory consumption issues, naively rendering
all shadow maps becomes prohibitive due to the sheer cost
of rasterizing the scene for each shadow map.

Although many current techniques reduce issues caused
by insufficient resolution, the fundamental compromise
between shadow quality and memory cost remains. It
is common for rendering engines to provide several op-
tions for shadows, each with their own set of trade-offs.
For example, screen-space ray tracing [10] can be used
in addition to shadow mapping implementations. This is
done to achieve sharper and more detailed contact shad-
ows. Specialized techniques are often used for different
light sources, further complicating the implementation.

In this work, we provide a unified technique capa-
ble of efficiently storing and rendering multiple shadow
maps for various light types. Our main contribution lies
in extending previously described implementation of Vir-
tual Shadow Maps [13] to allow for spot and point light
sources. Additionally, we describe the specifics of geom-
etry representation and culling, which were previously not
explained in a lot of detail.

In Section 2, we discuss current solutions to the prob-
lems outlined above and their shortcomings. In Section 3,
we provide an overview of the ideas our technique lever-
ages. We also describe how these ideas generalize to mul-
tiple lights and light types in a scene. Following this, in

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: The virtualization layout adapted by our tech-
nique. Each entry stores metadata about the page, de-
noted by different colors in the image. In this example,
white pages are not allocated, green pages are allocated
and visible this frame, yellow pages are allocated but not
visible this frame and finally blue pages are newly seen,
and thus dirty and requiring a backing page from the PPT.
The PPT itself is also denoted in the image. When a page
is backed, the VPT entry stores coordinates to the corre-
sponding page in the PPT.

Section 4 we give a high-level overview of how the geom-
etry in our scene is represented and how this is leveraged
allowing for highly efficient culling. Lastly, in Section 5,
we provide and discuss the results we were able to achieve
using our technique, and in Section 6 we conclude the ar-
ticle and offer promising directions for further research.

2 Previous work

The fundamental issue with shadow mapping are the ar-
tifacts introduced by insufficient shadow-map resolution.
These occur when a pixel projected into the shadow map
covers less than a texel in the shadow map. The same
shadow map texel is used to determine visibility for multi-
ple pixels, resulting in blocky looking shadows. To avoid
this, at least one-to-one mapping between shadow map
texels and pixels needs to be ensured. An example of the
discussed issues can be seen in Figure 1.

Cascaded Shadow Maps (CSM) is a popular algorithm
used to ensure a better distribution of shadow map tex-
els for directional lights [3]. In CSM, the viewer’s frus-
tum is partitioned into smaller frusta, each fit with its
own light space matrix and assigned a shadow map. The
scene is then rendered to each shadow map using the cas-
cade’s frustum. This results in a denser shadow map being
placed near the viewer where detail is most needed, while
distant regions receive coarser shadows. Sample Distri-
bution Shadow Maps (SDSM) improve CSM by using a
per-frame analysis of the scene to calculate tight fit frusta,
maximizing the efficiency of the shadow sample distribu-
tion regardless of scene content [7].

Adaptive Shadow Maps (ASM) take a different ap-
proach [4]. A hierarchical structure is introduced that is

used to match the resolution of the shadow map with the
resolution required by individual pixels. This structure is
iteratively refined using an edge-detecting algorithm that
ensures an efficient distribution of the texel shadow edges.
A slightly different approach was proposed by Resolution
Matched Shadow Maps (RMSM) [8]. RMSMs forgo the
expensive iterative refinement step in favor of detecting
the desired resolution of each pixel. Similarly to ASMs, a
quadtree is used to partition the resulting shadow map.

Another approach improving ASM is called Queried
Shadow Maps (QSM) [5]. By using occlusion queries
present in GPU hardware and improving the heuristics of
the refinement algorithm, QSMs offer much better perfor-
mance in highly dynamic scenes. This is mainly because
the improved refinement algorithm can be executed com-
pletely in each frame, which is not true for ASMs, which
rely on caching to deliver the best performance.

Recently, Efficient Virtual Shadow Maps for Many
Lights introduced the concept of virtualizing shadow maps
by separating the shadow map itself from its physical
storage [11]. This, in combination with efficient culling
and clustered shading, allows for very high numbers of
shadow-casting point lights.

Finally, Virtual Shadow Maps describes the complexi-
ties of implementing virtual shadow maps for directional
lights [13]. Our article builds upon and extends this publi-
cation.

3 Shadow map virtualization

As already stated above, the main issue that shadowmap-
ping faces is insufficient resolution. This can be solved
by increasing the resolution of the shadow map; however,
this quickly becomes impractical. A situation where a sin-
gle pixel maps to too many shadow map texels should also
be avoided. A one-to-one mapping between pixels and
shadow map texels is the most desirable. Due to the non-
uniformity of the area of the shadowmap covered by each
pixel, a different resolution is required for different parts
of the shadow map in order to achieve an ideal mapping.

These requirements are very similar to the ones de-
manded from ordinary textures. Textures usually have
the highest resolution possible to allow for good-looking
closeups, while relying on mipmaps for more distant
views. To combat the memory demands of high-resolution
textures, a technique called virtual texturing is often
used [2, 16]. By treating a shadow map as an ordinary
texture, we can apply all of these concepts to increase the
efficiency with which we render and store shadow maps.

Each shadow map is divided into a set of pages and is
fully virtualized. It is thus represented by a single texture
called Virtual Page Texture (VPT). VPT is of much lower
resolution than the full virtual resolution of the shadow
map. Every entry in the VPT contains the metadata for one
page. That is, each entry in the VPT contains the allocation
status and coordinates of the allocated page in the Physical

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 3: Visualization of the directional shadow map vir-
tualization and paging scheme. Black lines denote individ-
ual shadow map tiles. Different colors denote different clip
levels. We can clearly see how each clip level increases the
page size. The objects close to the viewing position have
low clipmap levels, because they require the most resolu-
tion. The further the objects get from the camera the less
resolution we need and so higher clip levels are requested.

Page Texture (PPT). The PPT is a second texture that we
introduce. It is shared by all shadow maps and is used
to provide the physical backing for the allocated pages in
the VPT. Because all lights share the PPT, the page size
is uniform across all shadow maps and light types. The
virtualization scheme can be seen in Figure 2.

An important part of our algorithm is determining the
shadow map pages that will be required for this frame. For
these purposes, the scene is rendered from the view of the
main camera into a depth buffer. Following this, a pass
over the acquired depth is performed. During this pass, we
project each pixel into VPTs of each light. Once we have
the footprint in the shadowmap, we can mark the pages
that this pixel will require.

This is followed by an allocation step. By analyzing the
PPT we can find the set of pages that can be reused. This
set is used to allocate VPT pages, marked in the previous
step, that do not have physical backing. We work with the
assumption that the PPT always has enough space to back
all visible pages.

The last part of our algorithm we would like to high-
light is shadowmap caching. Typically, the frame-to-frame
change in the visible, and thus marked, pages is not that
high. This can be leveraged by preserving the visibility in-
formation across frames. When a VPT page from the last
frame remains visible and its data in the PPT remain valid,
we reuse it as opposed to re-rendering the page. Now we
will describe how these concepts apply to individual light
types present in the scene.

3.1 Directional lights

A typical scene contains only one or two directional lights.
They always affect the entire scene and thus are particu-
larly difficult to provide consistent shadows for. Due to
their large area of influence, we represent them as a virtual
texture with extremely high resolution. To allow for this
approach, we need to use a concept called clipmap [15, 1].
The total virtual resolution is determined by the number of
clipmaps and the resolution of the zeroth clipmap.

All levels of a clipmap maintain the same resolution.
However, each level is separate and is represented by a
single VPT. Lastly, every clipmap level covers twice the
area of the previous one. The varying texel density of the
clipmap is thus ensured by the area covered by a single clip
map, not by varying resolution levels themselves. Figure 3
shows a visualization of the virtualized clip map scheme.

Directional lights use an orthogonal camera, which
greatly simplifies the process of marking the required
pages. This is because we do not need to project each
pixel into the actual shadow map and instead can perform
all our calculations in world space. A scheme depicting
this process can be seen in Figure 4.

3.2 Spot lights

A scene usually contains a larger number of spotlights.
However, unlike for directional lights, we do not need such
a large virtual resolution. This is mainly due to the fact that
their effects are much more localized. As such, resolutions
of four to two thousand texels are often sufficient.

Clipmaps are thus no longer needed, and we can instead
use the classic mipchain. This is a key difference between
spotlights and directional lights. Directional lights have
clip levels with constant resolution that cover an increas-
ing area. Spot lights have mipmap levels with decreasing
resolution that cover the same area.

While slightly complicating rendering of the shadow
map, as will be described in the following chapters, it al-

Figure 4: Illustrative figure showing how pixels are pro-
jected to determine the affected shadow map texels. The
red square denotes a single pixel. It is first projected back
into world space. All remaining calculations can be per-
formed in world space. This is possible due to the orthog-
onal projection used by directional lights.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: Visualization of paging and virtualization of a
single point light. Black lines denote individual shadow
map pages. Different colors determine separate point light
faces. The sizes of the pages imply the mip map from
which the tile was selected. The tiles are now distorted by
the perspective projection of the point light and no longer
appear strictly rectangular. Additionally, the more compli-
cated mip level selection can be observed. As the distance
towards the light decreases, the resolution of the shadow
map increases, which leads to lower mip map levels re-
quired (visible on the bottom, red, face of the point light).

lows one to reduce the number of VPTs required to rep-
resent the light. Where directional lights require an en-
tire VPT per clipmap, the mipchain of the VPT can be
leveraged. Thus, a spotlight can be represented by a sin-
gle VPT. Another difference is the usage of perspective
projection for the spotlights. This makes marking the re-
quested pages much more expensive. We can no longer
perform the marking in view space and need to project
fully into shadowmap space.

3.3 Point lights

The Last light type that will be described are point lights.
Point lights are often represented as cubemaps. A cube-
map can be represented by six rotated spotlights that share
an origin. This makes point lights in many ways similar
to spot lights. As such, point lights do not pose a signif-
icant difference for our technique. All our shadow map
textures are fully virtualized; a point light is thus simply
represented as six VPTs, one for each face. A visualization
of the point light paging scheme can be seen in Figure 5.
Of all the light types, point lights have the most expensive
page marking process. In addition to requiring the per-
spective projection described for spot lights, the cubemap
face needs to be manually determined. Figure 6 shows a
visualization of the spotlight marking process.

Figure 6: Illustrative figure showing how pixels are pro-
jected into a single spot light during marking phase. In
contrast to directional lights, spot lights use perspective
projection. This requires us to project the texel into world
space before fully projecting into shadow map space, in
order to find the footprint.

4 Shadowmap rendering

In this section, we will describe the process of render-
ing the shadows into pages backed by physical memory.
We will be rendering the scene tens to hundreds of times.
A highly efficient culling scheme is required to maintain
real-time framerates. For this purpose, we adopt mesh
shaders coupled with meshlets to represent our objects.

4.1 Scene representation

A scene is at the root of the hierarchical structure used to
represent geometry. It contains unique meshes which are
further divided into a set of meshlets. Each meshlet con-
tains information about a bounded number of triangles.
The bound is typically set very low; around 64 to 128 is
used in practice. This greatly aids in work distribution on
the GPU by closely fitting the mesh shading pipeline. Fig-
ure 7 shows a diagram that represents a simple scene.

Meshes only represent unique geometries present in the
scene. They need to be accompanied by a tree-like struc-
ture of entities describing the scene layout and instanc-
ing of individual meshes. Every entity stores a transform
and, optionally, indices to one or more meshes. The en-
tity graph is used purely on the CPU. At the start of every
frame, we walk through the entity graph and flatten it into
a set of draw lists. A draw list is a list of mesh indices that
logically group meshes with shared properties. For exam-
ple, transparent and opaque meshes would be present in
two separate draw lists.

4.2 Shadowmap rasterization

Once the draw lists of shadow casting meshes are pro-
duced, the shadow rendering can begin. As mentioned
above, each meshlet contains a bounded number of trian-
gles. However, the number of meshlets in each mesh is

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 7: Scene representation Hierarchy. The bottom
half shows the unique meshes and meshlets present in the
scene. The upper part shows an example of the entity
graph. Entities in blue reference at least one mesh, while
green entities only contain a transform. Note that a single
mesh can be referenced by more than one entity in the en-
tity graph.

highly variable. This poses a significant challenge when
scheduling work for the GPU. Because of this, we include
an additional work expansion step.

Work expansion performs further flattening of the draw
list, unwrapping meshes into a list of meshlet instances.
Due to a relatively high number of meshlets present in a
scene, this step is performed on the GPU. Once we have
the list of meshlet instances, we utilize the indirect capa-
bilities to dispatch a draw call. A task shader is assigned
to each meshlet in the meshlet list. After processing the
meshlet, it dispatches a group of mesh shaders. Finally,
each mesh shader processes a subset of the meshlets’ ver-
tices and writes the resulting triangles.

There are slight differences in how individual light types
are handled. As already described, every clip map of a di-
rectional light has the same resolution. We can pack mesh-

Figure 8: The process of draw list flattening during work
expansion. The input is a draw list containing indices to in-
dividual meshes. The work expansion algorithm unwraps
each mesh into individual meshlets that are placed into a
second buffer. During this step some meshes can be culled,
resulting in no meshlets placed into the expansion buffer.

Figure 9: Four levels of Hierarchical Page Buffer (HPB).
Black tiles denote dirty pages, that is, pages that will be
drawn into this frame. Each level is a 2× 2 logical ”OR”
reduction of the previous level. The red square denotes
how areas across HPB levels map upon each other.

lets for all clip maps into a single meshlet list, resulting in
a single indirect draw to render all clip maps at once.

Spotlights and point lights, however, use a mipmap
chain, which has varying resolution. We cannot pack
meshlets in the same way that we pack directional lights,
as individual draw calls are required for each resolution.
In contrast to directional lights, however, a typically scene
contains multiple point lights and spot lights. This allows
us to pack meshlets for non-directional lights by desired
resolution. Assuming the same virtual resolution, only
log2(resolution) draw calls are required to draw shadows
for all non-directional lights.

4.3 Geometry culling

Meshlet packing reduces the number of draw calls but does
not reduce the amount of geometry processed. In order to
maintain real-time frame rates, we need to cull the geom-
etry to decrease the load on the rasterization stages. The
proposed culling scheme closely matches our scene repre-
sentation and the logical steps of the drawing pipeline.

First, during the work expansion step, we cull the
meshes in the draw list. In this step, we only cull the entire
meshes. Once a part of the mesh is determined visible, all
of its meshlets are written into the meshlet list. This pro-
cess is visualized in Figure 8. Second, in the task shader,
we perform meshlet culling. Each task shader invocation
dispatches a group of mesh shaders if the respective mesh-
let is visible. Meshlets determined not to be visible are
discarded. Lastly, during meshlet processing, we cull in-
dividual triangles. Due to the relatively expensive nature
of fragment shader invocations, triangle culling is pivotal
in achieving the fastest possible results for RMVSMs.

We use various standard methods to determine visibil-
ity, starting from the fastest and most conservative. For
point lights and spotlights, we start with distance culling.
Because we know the radius each light affects, we can dis-
card objects that lie outside of this area. This method is not
valid for directional light sources as their radius would be
infinite. Following this we perform frustum culling which
is applicable for all light types. The bounds of each object

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 10: A night scene rendered using our method. The scene contains 26 shadow casting point lights with varying radii
of influence and a single directional light. The virtual resolution of each point light face is 2048 texels. The resolution of
each clip level is 4096 texels.

are checked against all frustum planes. If an object lies
outside the visible frustum, it is discarded. There are two
additional culling methods that we can utilize only when
culling triangles. The first is back face culling. Typically,
this step is performed by the rasterization pipeline; how-
ever, with mesh shaders, this needs to be done manually.
The second is called micro-triangle culling. This step will
remove all triangles that would not result in any fragment
shader invocation after rasterization.

Lastly, we utilize a method specialized for RMVSMs
called Hierarchical Page Culling. This method is appli-
cable to all light types as well as all three culling stages.
As already discussed, potentially only a very limited set
of pages is visible at one time. This makes the set of
pages that need to be drawn in any given frame very small.
Knowing this, we define a structure called the Hierarchi-
cal Page Buffer (HPB). This structure and the culling pro-
cess related to it are very similar to how a hierarchical Z
buffer [6] is used for occlusion culling.

The HPB is used to cull geometry that does not over-
lap any dirty pages. For directional light sources, we build
the HPB for each VPT, which corresponds to one HPB
for each clip level. Spot lights and point lights utilize mip
maps and have a single VPT for all mip levels. We still
need to cull individual mip levels separately, and thus need
to construct one HPB for each level of the VPT. Each level
in the HPB is constructed as a 2×2 reduction of the lower
level. The reduction starts with the lowest level that re-
duces the VPT itself. For this, a logical ”OR” reduction is
performed on a status bit marking the page dirty. Figure 9
shows four levels of the resulting HPB.

With this we can perform a standard culling procedure.

The axis-aligned bounding box of the object is projected
into the texture space of the light. From the projection
area, the appropriate level of the HPB is calculated. The
level is determined so that only four texels need to be sam-
pled in order to cover the whole projection area. If none of
the texels are marked as dirty, the object is culled.

5 Results and discussion

Now we present the results that we were able to obtain us-
ing our method. The method was implemented in an open
source research framework called Timberdoodle [12].

Next, we discuss the performance of the proposed
method. The measurements were taken with an NVIDIA
GeForce RTX 4070 Ti SUPER GPU and an AMD Ryzen
7 7800X3D CPU. Each test involved moving the cam-
era along a predetermined path. This is important when
measuring cached shadow maps, as for static cameras, all
pages remain cached, resulting in a practically zero cost.

For the first scenario, we utilized the Lumberyard Bistro
scene [9] containing ≈ 4,000,000 triangles. The scene
contained 26 point lights, each having virtual resolution
of 2048 texels. Additionally, a single directional light
was present. The directional light had 16 clip map levels,
where each level had a resolution of 4096 texels. For this
test, we used a PPT with a resolution of 16384 texels. This
was mainly done to guarantee enough space for all pages
and thus provide consistent test results. Figure 10 shows
an image rendered during this test case. Although the test
with the lower virtual resolution could fit into a smaller
PPT, less space would be available for page caching, and
the results would be skewed.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Marking Directional Point
64 4096 2048

Uncached 1543 µs 1132 µs 4193 µs
Cached 1086 µs 322 µs 145 µs

128 4096 2048
Uncached 1471 µs 1098 µs 4225 µs
Cached 985 µs 297 µs 152 µs

128 2048 1024
Uncached 1351 µs 781 µs 1862 µs
Cached 867 µs 182 µs 53 µs

Table 1: Mean GPU times for the three primary stages
of the algorithm in various configurations. Cached: the
scheme described in Section 3 for caching pages is used.
Uncached: every visible page is redrawn every frame. The
numbers in the header rows denote the resolution of each
page, the virtual resolution for the directional shadow map,
and the virtual resolution for each of the point lights.

We measured the performance in three test configura-
tions. The results of the measurements can be seen in Ta-
ble 1. The first uses the highest resolution textures and the
smallest page size of the three. This allows for the best
culling because the HPBs have the highest resolution. The
downside of this is a slightly elevated cost of the marking
pass, caused by less efficient scalarization utilized in the
marking pass implementation.

Another notable thing is the decreased performance of
the marking pass when caching is disabled. To mark the
pages, atomic operations were utilized. Due to the rela-
tively expensive nature of these operations, we attempt to
avoid them when possible. When a page is already cached,
we do not need to do any further work and thus can skip
the atomic allocation. This can not be done when caching
is disabled, because all pages are reallocated each frame.

With decreased resolution, performance increases al-
most linearly. Because there are four times fewer pixels
to draw, the drawing takes almost a quarter of the time.
The marking pass is also slightly cheaper. We attribute
this to the increased spatial location of the smaller VPTs.

For a second test scenario, we used the Intel Sponza
scene [14] with the Ivy, Curtains, and Trees add-ons. This
results in ≈ 12,000,000 triangles. This scene contained a
total of 20 point light sources along with a single direc-
tional light source. An image of the scene rendered using
our method can be seen in Figure 11.

There is one difference in the lights setup from the pre-
vious scene. The radius of influence for each point light
was reduced to approximately half of the first test scene.
This was done to match the smaller scale of the entire
scene. Not only does a smaller light radius affect the
visuals, it also improves the geometry culling. Indeed,
while the number of triangles is approximately three times
larger, the results when caching was utilized are compara-
ble.

Marking Directional Point
16384

Uncached 1543 µs 870 µs 7293 µs
Cached 1487 µs 312 µs 47 µs

8192
Uncached 1469 µs 915 µs 6925 µs
Cached 1512 µs 415 µs 322 µs

Table 2: Mean GPU times for the three primary stages of
the algorithm. Same as in 1 cached utilizes the scheme
described in Section 3 for caching pages, while uncached
redraw all visible pages every frame. Two PPT resolutions
were tested denoted by the numbers in the header rows.
The virtual resolution for each clip map was 4096 texels
and virtual resolution for each point light face was 1024
texels.

In this test case, we also measured the effect that the
size of the PPT has on performance. We tried two PPT
resolutions 16384 and 8192 texels. The resolution of each
point light face was reduced to 1024 texels. This was
done to allow for smaller PPT size without encountering
issues of insufficient memory. The results can be seen in
Table 2. The case with a resolution of 8192 texels can
be directly compared with a typical CSM implementation,
having four cascades with resolution of 4096 texels. With
RMVSMs we can utilize the same amount of memory to
back sixteen cascades with virtual resolution of 4096 tex-
els as well as 20 point light sources.

A reduction in performance can be observed when the
PPT size is decreased. This affects both the directional and
point lights as they share the PPT. That said, point lights
are affected more because they benefit more from caching.
For directional lights, pages still need to be invalidated and
redrawn when the main camera moves. This is true even
when caching is enabled and stems from the properties of
clipmap. However, the above is not true for point lights.
When the cache is large enough, all pages can be stored in
the PPT and never redrawn. The performance of uncached
shadow maps is independent of the PPT resolution as all
pages are redrawn each frame.

6 Conclusion and future work

In this article we have presented an efficient method for
rendering shadow maps. We showed that our method
scales well for many light sources and generalizes to var-
ious light types, allowing for a unified approach. This is
an improvement over existing methods that solve only a
specific part of the problem. We have described how our
method utilizes a specialized scene representation scheme
to allow for highly efficient culling.

The marking pass is the most expensive part. Using a
clustered shading approach proposed by [11] would re-
duce the number of lights for each pixel and reduce the

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 11: Intel Sponza rendered with our method. The
scene contains 20 point lights with virtual resolutions of
1024 texels per point light face. The radii of influence for
all point lights are identical and are comparatively smaller
than in Figure 10. Additionally a single directional light
source with virtual clip level resolution of 4096 texels is
present.

required processing. Another improvement would be to
utilize the hardware capabilities of modern GPUs to per-
form the marking step for us. Modern graphics APIs ex-
pose functionality called Sampler Feedback, which allows
for capturing and recording texture sampling information
and location. This could be used to project the pixel into
the shadow map. As projection is the most costly oper-
ation of the marking pass, this could further increase the
performance.

Lastly, sparse (or tiled) resources in graphic APIs are
a promising choice for RMVSMs. Currently, the API
for sparse resources does not allow for an indirect GPU-
driven approach. Backing individual pages would require
GPU read-back; however, we believe these issues can be
negated by a clever approach.

Acknowledgments

This work was supported by the Grant Agency
of the Czech Technical University in Prague, No
SGS25/150/OHK3/3T/13.

References

[1] Arul Asirvatham and Hugues Hoppe. Terrain render-
ing using gpu-based geometry clipmaps. GPU gems,
2(2):27–46, 2005.

[2] Sean Barrett. Sparse virtual texture mem-
ory. https://www.gdcvault.com/play/
417/Sparse-Virtual-Texture.

[3] Rouslan Dimitrov. Cascaded shadow maps. Devel-
oper Documentation, NVIDIA Corp, 2007.

[4] Randima Fernando, Sebastian Fernandez, Kavita
Bala, and Donald P Greenberg. Adaptive shadow

maps. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques,
pages 387–390, 2001.

[5] Markus Giegl and Michael Wimmer. Queried virtual
shadow maps. In Proceedings of the 2007 symposium
on Interactive 3D graphics and games, pages 65–72,
2007.

[6] Ned Greene, Michael Kass, and Gavin Miller. Hi-
erarchical z-buffer visibility. In Proceedings of the
20th annual conference on Computer graphics and
interactive techniques, pages 231–238, 1993.

[7] Andrew Lauritzen, Marco Salvi, and Aaron Lefohn.
Sample distribution shadow maps. In Symposium on
Interactive 3D Graphics and Games, pages 97–102,
2011.

[8] Aaron E Lefohn, Shubhabrata Sengupta, and John D
Owens. Resolution-matched shadow maps. ACM
Transactions on Graphics (TOG), 26(4):20–es, 2007.

[9] Amazon Lumberyard. Amazon lumberyard
bistro, open research content archive (orca), July
2017. http://developer.nvidia.com/orca/amazon-
lumberyard-bistro.

[10] Morgan McGuire and Michael Mara. Efficient gpu
screen-space ray tracing. Journal of Computer
Graphics Techniques (JCGT), 3(4):73–85, 2014.

[11] Ola Olsson, Erik Sintorn, Viktor Kämpe, Markus
Billeter, and Ulf Assarsson. Efficient virtual shadow
maps for many lights. In Proceedings of the 18th
Meeting of the ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games, pages 87–96,
2014.

[12] Matěj Sakmary and Patrick Ahrens. Tim-
berdoodle, 2025. https://github.com/Sunset-
Flock/Timberdoodle.

[13] Matěj Sakmary, Jake Ryan, Justin Hall, and Alessio
Lustri. Virtual shadow maps. In GPU Zen 3, pages
319–336. Black Cat Publising, 2024.

[14] Intel Sponza. Intel sponza scene,
graphics research samples, May 2020.
https://www.intel.com/content/www/us/en/developer/topic-
technology/graphics-research/samples.html.

[15] Christopher C Tanner, Christopher J Migdal, and
Michael T Jones. The clipmap: a virtual mipmap.
In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages
151–158, 1998.

[16] JMP van Waveren and Evan Hart. Using virtual tex-
turing to handle massive texture data. In GPU Tech-
nology Conference, volume 10, 2010.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)


