
Volumetric Radial Shadow Maps

Martin Jakab*

Supervised by: Dr. László Szécsi†

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Műegyetem rkp. 3., H-1111
Budapest / Hungary

Abstract

This paper presents a novel approach to volumetric
shadow mapping aimed at reducing the computational re-
dundancy inherent in conventional methods. Traditional
volumetric shadow maps evaluate the same depth sam-
ples along all primary rays that coincide in the depth
map space. Our method pre-processes the shadow map
and gathers discrete shadow segments —key intervals
that capture the essential shadow-casting characteristics
of objects— along possible primary ray images in the
depth map. This requires accurately determining the an-
gular and radial ranges from the light source’s perspec-
tive, ensuring that only the relevant portions of the scene
are processed during shadow calculation. A major bene-
fit of this approach is that the computational cost scales
with the scene’s depth complexity rather than the num-
ber of ray casting samples required for a given quality
level. Preliminary evaluations indicate that this approach
not only streamlines the shadow computation process but
also maintains high visual fidelity.

Keywords: Shadow Map, Light Shaft, Real-time Ren-
dering, Participating Media

1 Introduction

In this paper, we introduce the fundamental principles
and an initial implementation of radial volumetric shadow
maps. This new technique is intended to accelerate
shadow computations when the effect of a solid shadow
caster on participating media with single scattering is con-
sidered. The lighting effect that arises in this situation is
known as light shafts or crepuscular rays, and are staples
of real-time rendering. We offer an improvement over the
traditional solution of ray marching along primary rays
originating form the camera, while looking up a shadow
map rendered from the light source. In particular we re-
duce the number of samples required in the ray marching
step by pre-processing the shadow map.

*martinjakab01@gmail.com
†szecsi@iit.bme.hu

The first step in understanding the pre-processing of the
shadow map is a reparametrization using epipolar geome-
try. This gives the name radial to our method, as isopara-
metric points lie along radial (epipolar) lines in the shadow
map space. The values stored in the map are also not depth
values any more, but angular coordinates. The second
step is substituting the shadow caster geometry along these
lines with isoparametric segments with shadow casting ca-
pability identical to that of the original objects. During ray
casting, primary rays can be tested against these segments
instead of sampling the original shadow map, leading to
significant reduction of required bandwidth.

This approach enables faster processing of shadow map
data, as the number of segments in radial shadow maps
is, on average, substantially lower than the number of
steps required in traditional per-ray shadow computations.
However, the method necessitates additional processing
steps during shadow map generation.

In this study, we present the algorithmic foundation
for constructing and processing radial volumetric shadow
maps. Furthermore, we discuss the details of our imple-
mentation and explore the potential applications of this
technique in real-time rendering and other relevant do-
mains.

2 Related work

Employing ray marching to render volumetric effects is
a classic method in graphics, as is using shadow maps to
determine light source visibility at the sample points along
the camera rays. Full ray marching, however, over all cam-
era rays independently, is extremely expensive compared
to other shading effects, as a high number of sample points
in every pixel is required. Several approaches have been
proposed to exploit coherence, speeding up the process,
often with the goal of real-time performance.

The work of Engelhardt and Dachsbacher [1] is an ex-
ample of an approach where ray marching is not per-
formed for all screen-space pixels, but instead only for
cleverly selected ones, and interpolation is used other-
wise. This work uses epipolar geometry based on the light
source and the camera as optical centers, exactly like our

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



work presented in our current paper. They locate the ray-
marched samples along epipolar lines in camera space.
Our work, instead, focuses on the epipolar lines in the
shadow map space, and pre-processes the shadow map for
faster ray marching. Thus, Engelhardt and Dachsbacher’s
work reduces the number of rays to be marched, whereas
our work speeds up ray marching itself. Although both
methods rely on the same epipolar geometry setup, they
are orthogonal, and could be used together in theory.

The work of Hanika et al [2] introduces camera-space
shadows. The idea is similar to our work: pre-processing
the shadow caster geometry to produce an acceleration
structure for faster inscattering evaluation along a ray in-
stead of full ray marching. The authors propose to build
a quadtree, and thus construct shadow volumes identical
in effect to the original shadow casting geometry. Our
work produces a data structure with a similar function, but
we exploit epipolar geometry to work on two dimensional
epipolar planes instead of three dimensional shadow vol-
umes.

Lin et al. [3] achieved a speed-up by reducing sampling
in the temporal domain when rendering dynamic scenes.
Adaptive Volumetric Shadow Maps [5] and Deep Shadow
Maps [4] go further than handling solid shadow casters,
and instead capture the volumetric partial shadowing of
participating media, layered or semi-transparent geometry.
They are powerful and generic methods as opposed to our
focus on the specific case of solid shadow casters.

3 Radial Volumetric Shadow Map Al-
gorithm

We assume a pinhole camera and a point-like light source
directionally confined to a frustum. These define an epipo-
lar system. Planes that contain both the camera and the
light source are the epipolar planes. Figure 1 provides an
illustration of the concept. The key observation is that all
primary rays originating from the camera that are in the
same epipolar plane map to the same line in the shadow
map. Thus, during ray marching these rays, the same
depth samples are read to determine if the sample point
is in shadow or not. In fact, rays are composed of shad-
owed and lit segments. We are going to show (in sec-
tion 3.4) that rays in the same epipolar plane, when lim-
ited to the outside of solid shadow-caster geometry, can
be composed of identical potential segments when using
epipolar parametrization. Light visibity over these poten-
tial segments can be evaluated for any particular primary
rays to identify lit parts.

The epipolar planes appear in the shadow map as epipo-
lar lines. These lines start from the epipolar point corre-
sponding to the camera, and proceed in radial directions.
We refer to these epipolar lines as spokes. The spokes are
shown in Figure 2.

An epipolar plane is identified by a spoke angle, which

gives the direction of the spoke in the shadow map space.
A light ray on a spoke is identified by its distance from
the camera’s epipolar point in the shadow map space. A
point on a light ray may be identified by its distance from
the light source, but also by picking the camera ray going
through it. The camera rays in the epipolar plane are iden-
tified by the angle between them and the line connecting
the light and the camera. We will refer to these angles as
secondary angles.

The volumetric shadow mapping algorithm consists of
multiple steps, which are detailed below. The final output
of the algorithm is an image with single-scattering partici-
pating media rendered with shadows cast by solid geome-
try.

α

β

light

camera

spoke

Figure 1: α denotes the spoke angle, β denotes the sec-
ondary angle. The black circle represents an object point,
and the red line is the ray on which the object point lie.

Figure 2: The spokes from the light source’s perspective.

3.1 Angular range

We first describe a re-sampling of the shadow map into
different texture that can be addressed using the epipolar
coordinates. This step would not be strictly necessary, as
lookups could be mapped to the original shadow map on-
the-fly. However, this explicit re-sampling allows us to
demonstrate and visualize our radial shadow map.

The first step in computing the radial shadow map is
identifying the angular ranges relevant to shadow calcula-

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



tion. The camera’s view frustum, as seen in the shadow
map, may only cover a part of the spoke directions. Re-
stricting the angular domain to regions visible to the cam-
era from the light’s perspective allows us to optimize tex-
ture usage by excluding unnecessary angles. Since these
angles remain fixed for a given light source for each ray,
this computation is performed only once per light. To ac-
complish this, the angles corresponding to the edges of the
camera’s view frustum must be determined from the light’s
viewpoint.

After calculating these angles, we need to sort them.
Once the values are arranged in increasing order, the algo-
rithm calculates the largest gap between consecutive val-
ues in the sorted array, considering the circular nature of
the arrangement by connecting the last value to the first.

The largest gap is identified by computing the difference
between each value and its successor. The position of the
largest gap is tracked as well.

If the largest gap is smaller than π , it means we need
to consider every angle on the circle, since the camera’s
viewport covers all angles in the range [−π,π].

Otherwise, the boundaries are determined by the two
values surrounding the largest gap. This method efficiently
identifies the largest empty region in a circular sequence of
values and returns the corresponding boundary angles.

αmin

αmax

rmin

rmax

Figure 3: The angular range is defined as [αmin,αmax], and
the radial range is defined as [rmin,rmax].

3.2 Radial Ranges

We also calculate the visible range for each spoke from the
light source’s perspective, i.e. which part of the epipolar
line is within the frustum of the lights. Since the spoke is
already in the light’s clipping space, we only need to check
where it intersects the [−1,1] box. This eliminates the
need for complex calculations involving the light’s frus-
tum, making the procedure straightforward as shown in
Figure 3.

3.3 Radial Shadow Map

The next step of the algorithm requires generating tra-
ditional shadow maps from the light’s viewpoint, which
store depth values in world-space units for simplicity. Two
shadow maps are required: one for the front faces and
another for the back faces, with the rationale for this ex-
plained in section 3.4.

In a radial shadow map, the spoke angles correspond
to the y-coordinates, while the x-coordinates represent the
distance along the ray in texture space. The specific angles
and distances for each pixel are computed, considering
both the angular and radial ranges. Once the texture co-
ordinates for a given ray point are determined, they can be
used to sample the shadow maps. The resulting depth sam-
ple is then utilized to calculate corresponding secondary
angles. These secondary angles are subsequently aggre-
gated into shadow segments, as described in section 3.4.
To optimize computational efficiency, it is sufficient to
store the dot product between the sample direction and the
light-camera direction.

Due to the preliminary range calculations, the algo-
rithm efficiently processes only the relevant portions of the
shadow maps, reducing unused texture space and thereby
enhancing segment resolution.

3.4 Shadow Segment Calculation

Segment encoding can be seen as a kind of run-length en-
coding (RLE) along shadow map spokes. This method is
particularly effective for compressing data with long se-
quences of identical values. While shadow map depth data
is almost never composed of constant-value runs, we aim
to replace the values with such runs without compromos-
ing the resulting shadows outside of shadow caster objects.
By storing the shadow segments in this manner, we can
significantly reduce the memory footprint of the shadow
map.

To generate the segments, we process each row of the
radial shadow map (i.e. a shadow map spoke) simultane-
ously using a compute shader. Remember that values in
the radial shadow map are secondary angles, which are
constant along a primary ray. In this section, for simplic-
ity, we will simply refer to the secondary angle as depth,
which is valid in the radial shadow map’s space. We aim to
generate segments of constant depth. In order for the seg-
ment to have the shadowing capability as the original solid
shadow caster geometry, segment depth has to remain be-
tween front face and back face depths.

We scan the values sequentially, while maintaining
a possible minimum and maximum depth for the seg-
ment. Whenever the minimum and maximum values
would cross, a new segment is started. This ensures that
the section of the geometry that the segment represents
has the same shadow casting properties as the segment,
as shown in figure 6.

The algorithm follows these steps:

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



camera

spoke

Figure 4: Traditional shadow map

camera

spoke

camera

spoke

Figure 5: Radial shadow map

1. Initialize Variables:

• Set up indices and texture dimensions.

• Define variables for tracking the minimum and
maximum, and last secondary angle values for
the front face and the back face, and segment
properties.

• Initialize a state variable to track whether the
current pixel belongs to a potentially shadowed
or completely lit region (where no shadow cast-
ers at any depth are present). We call these ob-
ject state and lit state, respectively.

2. Iterate Over Each Pixel in the Row:

• Read shadow depth values (front and back)
from the texture.

• Determine the current state based on depth val-
ues:

– If the depth values are not the background
values, but valid front and back face depth,
we are in the object state.

– Otherwise, we are in the lit state.

• A segment is created when:

– A shadow-casting segment is found, mean-
ing that the minimum depth would exceed
the maximum depth.

– Transitioning from an object region to a lit
region or vice versa.

• When creating a segment, we store its depth
(i.e. secondary angle), and its length in texture
space.

• If the pixel remains in the same state, update
minimum and maximum depths accordingly.

3. Finalize the Last Segment:

• If a segment was still being recorded at the end
of the row, store it.

light

camera

shadow area

lit area

spoke

spoke

segment

segment

Figure 6: The segments along a spoke. In this example,
the shadow casting object is partitioned into two shadow
casting segments.

3.5 Shadow segment processing

When computing the light’s contribution to the scene, we
determine the camera ray direction for each pixel, fol-
lowing the same approach used in traditional volumetric
shadow implementation. Once the ray direction is estab-
lished, deriving the spoke angle and the corresponding sec-
ondary angle becomes straightforward. Since the spoke
angle falls within the precomputed angular range, we can
obtain the interpolation parameter, which, when multiplied
by the total number of spoke angles, yields the correspond-
ing spoke angle index.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



light

camera

shadow area

lit area

spoke

spoke

segment

segment

Figure 7: The segments along the spoke in an epipolar
viewpoint.

The shadow contribution calculation involves iterating
through the shadow segments and evaluating each seg-
ment’s secondary angle relative to the camera ray’s sec-
ondary angle. This comparison enables the determination
of whether an entire ray segment is occluded or remains
unshadowed, as illustrated in Figure 8.

light

camera

shadow area

lit area

secondary
angle

segment

Figure 8: These are three cases of secondary angles for
a given spoke. In the leftmost case, both segment com-
parisons fail. In the center case, one comparison fails
while the other succeeds. In the rightmost case, both com-
parisons are successful. Segment comparisons that failed
are highlighted in red, while successful ones are shown in
black.

Secondary angles may exist where iterative evaluation
results in unintended light contributions. These contribu-
tions should be properly constrained by the light source’s
far clipping plane. Without enforcing this far-plane con-
straint, light rays will continue to propagate indefinitely,
converging toward a singularity due to the absence of

proper clipping.
The far clip distance, dfar, is computed as follows:
The far clip radius is given by

rfar =
weye− zeye

zray−wray

where weye,zeye are the homogeneous and depth compo-
nents of the transformed eye position, and wray,zray are
those of the ray direction.

The far clip point is computed as

pfar = e+ rfard

where e is the eye position and d is the normalized ray
direction.

Projecting the far clip point into clip space gives

pfar,clip = Ppfar

which is then normalized by its homogeneous component:

pfar,ndc =
pfar,clip

wfar,clip

The radial distance of the far clip point in normalized
device coordinates (NDC) is

rfar,ndc = ∥pxy
far,ndc−pxy

eye,ndc∥

Finally, the far clip distance is determined by

dfar =
rfar,ndc−2rmin

rmax− rmin

with a conditional adjustment ensuring dfar = 1 when
rfar < 0.

Another constraint for the light contribution is the ob-
ject’s distance along the camera ray, which must be trans-
formed into its radial distance in texture space.

elight = Plight ·
(
e+d ·ddepth

)
where e is the eye position, d is the ray direction, and Plight
is the projection matrix for the light. The eye space depth
is then transformed by the light’s projection matrix into
light space coordinates.

Next, we compute the light’s coordinate depth:

rlight =
elight

wlight
− reye

where wlight is the homogeneous component of the light’s
projected depth, and reye is the eye position in NDC space.

The radial distance in texture space is then given by:

rlight =
∥rlight∥−2rmin

rmax− rmin

where rmin is the minimum radius, and rmax is the maxi-
mum radius.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Algorithm 1 Shadow Segment Light Contribution
1: S ← segments at angle index θ

2: ℓcurr← 0
3: ρmax←min(dlight,dfar)
4: L← 0
5: for i = 0 to n−1 do
6: if ℓcurr ≥ ρmax then
7: break
8: end if
9: s←S [i]

10: if ℓs ≤ 0 then
11: break
12: end if
13: ℓ← ℓs
14: ℓnew← ℓcurr + ℓ
15: if ℓnew > ρmax then
16: ℓ← ρmax− ℓcurr
17: αobj← 0
18: end if
19: ℓcurr← ℓnew
20: if αs < αray then
21: L← L+Clight · Ilight · ℓ · rdiff ·2
22: if ℓnew > ρmax then
23: break
24: end if
25: continue
26: end if
27: end for
28: return L

Finally, we ensure the calculated depth is constrained to
the appropriate value.

Once the constraint values have been established, the
minimum value among them will determine the final dis-
tance. The implementation is detailed in Algorithm 1.

This algorithm efficiently accumulates light contribu-
tions by traversing precomputed shadow segments, us-
ing angle-based occlusion tests and respecting the spatial
constraints established by the far clip distance and object
depth.

4 Results

For the implementation we used a custom renderer built
using the wgpu Rust library. The following results were
obtained on a machine with an Intel i7-12650H CPU and
an NVIDIA RTX 3050Ti Mobile GPU.

We compare our solution with the traditional volumetric
shadowing method in a simple scenario. The presented
scene consists of a cube and a rectangular cuboid with a
hole.

In the traditional approach, we make a slight optimiza-
tion compared to a completely naive implementation: we
compute the intersection segment of the ray with the light
source’s frustum and perform calculations only within this
segment.

To ensure comparable results between the two methods,
we use the same step resolution, so the number of steps
taken along each ray is the same. The results are shown in
Table 1.

Our tests indicate that even at relatively low shadow
map resolutions, the radial method can be advantageous.
This is due to the significantly lower number of segments
required compared to the number of samples needed in the
traditional approach.

An example result is shown in Figure 9. The scene is
rendered with a resolution of 1920× 1080 pixels, and the
shadow map resolution is 1024× 1024 pixels. The maxi-
mum number of segments is set to 32.

In certain cases, as illustrated in Figure 10, the number
of segments can increase significantly, potentially exceed-
ing the predefined maximum threshold. This may lead to
artifacts, as the entire radial domain is not fully covered.
An example of this is shown in Figure 10.

Near the camera, the spokes are typically densely
packed because the rays converge toward the camera. As a
result, shadow quality tends to degrade along the direction
of the rays.

5 Conclusions

In our work, we explored a novel approach to generating
volumetric shadows, achieving significant performance
improvements in several test cases. However, in certain

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)



Step resolution Traditional Radial
128 12.5 ms 2.0 ms
256 21.7 ms 2.7 ms
512 27.6 ms 3.8 ms
1024 40.5 ms 5.1 ms

Table 1: Comparison of the two methods with different
step resolutions (1920×1080 render resolution)

Figure 9: An example result of the Stanford Dragon model
with volumetric shadows.

scenarios, our method proved less efficient than traditional
techniques.

We implemented a solution that represents an object’s
shadow-casting capability using segmented intervals, ef-
fectively eliminating redundant computations along the
shadow rays.

Our method can be further enhanced by investigating
the following directions:

Reducing the number of segments can not only lower
computational costs but also decrease the likelihood of
exceeding the segment buffer’s capacity. This can be
achieved by allowing segments to be stored with two sec-
ondary angles instead of one, enabling the merging of
sections that remain entirely within the object’s projected
shadow volume. During processing, the true secondary an-
gles can be derived through interpolation between segment
endpoints.

The per-row processing of the radial shadow map tex-
ture can be parallelized using parallel reduction tech-
niques, potentially improving performance.

In many cases, rendering passes can be consolidated to
minimize unnecessary texture accesses. Moreover, alter-
native, non-traditional rendering techniques could allow
for direct rendering of the radial shadow map texture, fur-
ther improving efficiency.

6 Acknowledgements

This work was supported by OTKA K-145970 and by
the Ministry of Innovation and Technology NRDI Office
within the framework of the Artificial Intelligence Na-
tional Laboratory Program.

light

camera

segment

shadow area

lit area

Figure 10: An example case where too many segments
need to be inserted.

Figure 11: An example scenario in which an artifact is
generated due to the insertion of an excessive number of
segments.

References

[1] Thomas Engelhardt and Carsten Dachsbacher. Epipo-
lar sampling for shadows and crepuscular rays in par-
ticipating media with single scattering. In Proceedings
of the 2010 ACM SIGGRAPH symposium on Interac-
tive 3D Graphics and Games, pages 119–125, 2010.

[2] Johannes Hanika, Peter Hillman, Martin Hill, and
Luca Fascione. Camera space volumetric shadows.
In Proceedings of the Digital Production Symposium,
pages 7–14, 2012.

[3] Hsiang-Yu Lin, Chin-Chen Chang, Yu-Ting Tsai, Der-
Lor Way, and Zen-Chung Shih. Adaptive sampling
approach for volumetric shadows in dynamic scenes.
IET Image Processing, 7(8):762–767, 2013.

[4] Tom Lokovic and Eric Veach. Deep shadow maps. In
Seminal Graphics Papers: Pushing the Boundaries,
Volume 2, pages 311–318. 2023.

[5] Marco Salvi, Kiril Vidimče, Andrew Lauritzen, Aaron
Lefohn, and Matt Pharr. Adaptive volumetric shadow
maps. GPU Pro 360 Guide to Shadows, pages 97–113,
2018.

Proceedings of CESCG 2025: The 29th Central European Seminar on Computer Graphics (non-peer-reviewed)


