Time Evolution Simulation of the Quantum Mechanical Wave Function in 3D Space

Zoltán Simon

Supervisor(s): Dr. Balázs Csébfalvi, Dr. Péter Vancsó, Dr. Géza István Márk

Budapest University of Technology and Economics


Abstract: In quantum mechanics, the wave function describes the state of a physical system. In the non-relativistic case, the time evolution of the wave function is described by the time-dependent Schrödinger equation. In 1982, D Kosloff and R Kosloff proposed a method to solve the time-dependent Schrödinger equation efficiently using Fourier transformation. The computational physics research group, led by Géza I. Márk in the Nanotechnology Department, Institute for Technical Physics and Materials Science, Centre for Energy Research, located in Budapest, in collaboration with Belgian researchers, developed a simulation method based on three-dimensional wave packet dynamics for the study of electron dynamics in nanosystems. A simplified, interactive, two-dimensional version for educational purposes was published in 2020. In this work, we demonstrate two improvements of the wave packet dynamical simulation software: (i) the use of the Graphical Processing Unit (GPU), which results in a vast (up to 50x) increase in simulation speed, and (ii) the introduction of advanced visualization techniques which are helpful to correctly interpret massive 4D space-time wave function data sets obtained from the simulation. For further information and animations, please visit https://zoltansimon.info/src/content/research/wavepacketsim.html
Keywords: Scientific Visualization
Full text:
Year: 2024